MuCool Test Area Update

Yağmur Torun
Illinois Institute of Technology

All Experimenters’ Meeting
Fermilab – January 27, 2014
Mission and Current R&D
Role in Muon Accelerator Program

• Advance *Technology Development* for ionization cooling
 – help design, prototype, test components
 • grid windows, modular pillbox, dielectric-loaded HPRF
• Inform machine *Design & Simulation* studies
 – provide performance envelope
 • vacuum RF in external magnetic field
 • HPRF in beam
• Support *Systems Demonstrations*
 – MICE
 • Single-Cavity Module assembly, instrumentation, testing
805-MHz Vacuum RF Program: All-SeasonCavity

• Last run complete
 – 25 MV/m at B=0
 – 20-22 MV/m @ B=0.25-5T [preliminary]
 (sparking rate ≤ 1 in 10^5)
 – cavity removed from MTA

• Inspection
 – similar spots on endplates
 – more around coupler
 – scanner & microscope tested

• Data analysis in progress
 – publication draft soon
805-MHz Vacuum RF Program: Button Pillbox Cavity

- Final test in progress
- Windows: low radiation length, good electrical and thermal conductivity
 - Flat thick Cu ✔
 - Thin pre-stressed flat Be ✗
 - Thin curved TiN/Be ✔
 - Exploring alternative: gridded tube windows
 - Solid Al prototype for test
 - Electro-polished
 - TiN coated (one face)
 - Cavity assembled with grids (and spacer), installed in solenoid – running now
805-MHz Vacuum Cavity Program

Moving forward

• New modular cavity for detailed systematic studies (SLAC, LBNL)
 – Modular design for easy assembly, inspection, parts replacement
 – Removable endplates (initially Cu; Be, other materials, treated surfaces)
 – Coupling iris moved to center ring and field reduced (*more realistic design for cooling channel*)
 – RF design validated by detailed simulation
 – Ports for instrumentation
 – Inspection setup under preparation
 – Fabrication close to completion
 – Expected delivery to MTA: FY14 Q2
• Incorporates all lessons learned
201-MHz Single-Cavity Module

- MICE cavity in vacuum vessel for MTA test
- Components
 - 1st MICE cavity EP’ed at LBNL
 - Vacuum vessel built at Keller
 - Be windows to be reused
 - Actuators built at LBNL
 - Tuner forks built at FNAL
 - New coupler fabrication in progress at LBNL
• Assembly/integration
 – Clean room prepared in Lab-6
 – Main assembly complete
 – Plan in place for handling and transport to MTA
 – Tuner system tested

 • Hall infrastructure
 – Services mostly in place
 – Overhead crane installation to start soon

 – Expect operation Spring 2014
 • depending on coupler delivery, hall infrastructure and RF source availability

 – beam test also under consideration

• Ultimately to be tested with the first Coupling Coil Magnet
 – Requires 6-month MTA shutdown (2015)
805-MHz HPRF Cavity Program

- HPRF previously tested at the MTA
 - Dense H₂ gas buffers dark current while serving as ionization cooling medium
 - No B-field effect, 1 MV/m per atm H₂
- 2 beam tests to evaluate response to high-intensity beam
 - Beam-induced plasma loads cavity
 - Mitigate with electronegative dopant
 - Wide range of parameters explored
 - Demonstrated operation with beam in 3T field
- Initial results published
 - Quantitative theory validated by measurement of energy loss in H₂/D₂+dopant
 - Dopants turn mobile ionization electrons into heavy ions, reducing RF losses by large factor
- Results extrapolate well to Neutrino Factory operation and a range of Muon Collider beam parameters
 - Plasma loading < beam loading
 - Bunch intensity limits being evaluated
- Also preparing for dielectric-loaded HPRF cavity test to enable smaller coils in HCC

Measured (for H₂/D₂+dry air)
- Energy loss/e-ion pair/RF cycle
- e attachment time to oxygen
- Ion-ion recombination rates
Analysis of rest of the data close to completion
Plasma Loading in HPRF Beam Test

- Graphs showing the effect of loading on plasma in HPRF beam test.
- Various conditions tested:
 - No Loading
 - Pure H_2
 - $H_2 + DA$
 - $H_2 + DA + 3T$
 - $D_2 + DA$

- Data points for different pressures and conditions:
 - H_2, 100 atm
 - H_2, 78 atm
 - H_2, 54 atm
 - H_2, 34 atm
 - H_2, 20 atm

- Graphs illustrating the relationship between plasma loading and various parameters.

- Additional graphs showing dW/cycle/pair as a function of X_0 (V/cm/Torr) for different pressures and conditions.

- Graph showing the relationship between τ (ns) and p (atm) for different concentrations of DA.
Dielectric-loaded HPRF

- Need to shrink transverse cavity size to reduce magnet apertures in HCC
- Proof-of-principle test: HPRF test cell + alumina
 - suppression of breakdown up to surface breakdown limit of material
- Other samples to be measured at low power
- High power test in MTA for promising candidates (suitable dielectric constant, low loss tangent)
- Beam test if successful
- Also looking at reentrant cavity design (Muons Inc)
Beamline commissioning
(M. Backfish, C. Johnstone)
Next generation

- MTA program continued to support steady stream of students in FY13
 - Ben Freemire, IIT
 - Ph. D., May 2013 (HPRF beam test)
 - Peter Lane, IIT
 - Working toward Ph. D. (breakdown localization with acoustic sensors)
 - Luca Somaschini, INFN Pisa
 - About to receive M. Sc. (MICE cavity tuner system)
 - Jared Gaynier, Kettering U. (Fermilab coop)
 - Undergrad, major contribution to MICE SCM assy
 - Logan Rowe, John Sobolewski (coop)
 - Components for button pillbox and ASC
 - Lisa Nash (U. Chicago), Yiqing Ding (Purdue U.)
 - Grad, dielectric loaded HPRF design/testing

- Students first author on several IPAC13 and NAPAC13 abstracts
Recent publications

- **High Pressure Gas-Filled RF Cavity for Use in a Muon Cooling Channel**, B. Freemire *et al.*, NA-PAC13 proceedings
- **Investigation of Breakdown Induced Surface Damage on 805 MHz Pill Box Cavity Interior Surfaces**, M. Jana *et al.*, NA-PAC13 proceedings
- **Multipacting Study for the RF Test of the MICE 201 MHz RF Cavity at Fermilab MTA**, T. Luo *et al.*, NA-PAC13 proceedings
- **Modeling Vacuum Arcs in Linac Structures**, J. Norem *et al.*, NA-PAC13 proceedings
- **Fermilab MuCool Test Area Cavity Conditioning Control Using LabVIEW**, D. Peterson and Y. Torun, NA-PAC13 proceedings
- **Algorithms and Self-consistent Simulations of Beam-induced Plasma in Muon Cooling Devices**, R. Samulyak *et al.*, NA-PAC13 proceedings
- **Tuner System Assembly and Tests for the 201-MHz MICE Cavity**, L. Somaschini *et al.*, NA-PAC13 proceedings
- **Assembly and Testing of the First 201-MHz MICE Cavity at Fermilab**, Y. Torun *et al.*, NA-PAC13 proceedings
- **Analysis of Breakdown Damage in an 805 MHz Pillbox Cavity for Muon Ionization Cooling R&D**, D. Bowring *et al.*, IPAC13 proceedings
- **A Modular Cavity for Muon Ionization Cooling R&D**, D. Bowring *et al.*, IPAC13 proceedings
- **Transient Beam Loading Effects in Gas-filled RF Cavities for a Muon Collider**, M. Chung *et al.*, IPAC13 proceedings
- **Beam Induced Plasma Dynamics in a High Pressure Gas-Filled RF Test Cell for use in a Muon Cooling Channel**, B. Freemire *et al.*, IPAC13 proceedings
- **Multipacting Simulation of the MICE 201 MHz RF Cavity**, T. Luo *et al.*, IPAC13 proceedings
- **High Power Tests of Alumina in High Pressure RF Cavities for Muon Ionization Cooling Channel**, L. Nash *et al.*, IPAC13 proceedings
- **The RF System for the MICE Experiment**, K. Ronald *et al.*, IPAC13 proceedings
- **RF Cavity Spark Localization Using Acoustic Measurement**, P. Snopok *et al.*, IPAC13 proceedings
- **Simulation of Beam-induced Gas Plasma in High Gradient RF Field for Muon Colliders**, K. Yonehara *et al.*, IPAC13 proceedings
- **Summary of Dense Hydrogen Gas Filled RF Cavity Tests for Muon Acceleration**, K. Yonehara *et al.*, IPAC13 proceedings
Outlook

- Operating point for 805-MHz vacuum RF in 0-5T established, ASC program concluded
 - preparations mostly complete for next step (modular cavity)
 - test program to start this year
- MICE cavity assembly complete
 - Installation/commissioning soon
- Plasma loading for HPRF in beam evaluated
 - looks promising
- Proof-of-principle dielectric loading test complete
 - follow-up program in progress
- Facility/infrastructure
 - beamline upgrade commissioning in progress
 - overhead crane installation next
 - framework for external user experiments being put in place (detector prototype irradiation)