DarkSide-50 (E1000) report to All Experimenters Meeting

Stephen Pordes
All Experimenters Meeting
Feb 9 2015
DarkSide-50 at LNGS Apparatus Schematic

LAr 2-phase TPC (50kg active, 150 kg total) 38 PMTs

Liquid Scintillator Veto
4 m sphere (30 tons) 110 PMTs

Water Cerenkov Veto
11m φ 10 m high (1 kt) 80 PMTs

3000 m.w.e overburden

2 x 10^{-45} \text{ cm}^2 \text{ @ 0.1 t-yr exposure}
Fermilab Technical Responsibilities in DarkSide-50

- DS-50 Argon system
 C. Kendziora (PPD-MED)
- Underground Argon Purification
 (H.Back*) (PAB)
- Trigger for TPC & Global Trigger
 B. Baldin (PPD-EED)
- Data Acquisition (artdaq)
 K. Biery (SCD)
- Offline framework (art)
 art group (SCD)
- Data Transfer from Italy
 CCD
- SAM, Fermigrid, OSG, Fife
 Ken Herner (SCD)

* Princeton University
Activities since last report to AEM (June 2013)

• Produced first paper on dark matter search

• Replaced biological based TMB (300 kHz 14C rate in veto) with oil based TMB

• Performed neutron and gamma calibrations of the TPC and veto

• Shipped ~140 kg of purified, underground (low-radioactivity) argon(UAr) to LNGS in preparation for fill in March.

=> Period of intense activity to fill with UAr in March.
Activities to be able to insert Underground Argon (UAr)

• Installation and commissioning of final gettering system
• Connection between gettering system and DarkSide system
• Completion of Argon Recovery System – Cryocooler water lines, high-pressure compressor, gas-lines
 all argon and nitrogen piping to Helium leak-check standards
• Recovery system test (with atmospheric argon)
• Getter system test

=> Empty DarkSide-50 mid-March
=> Fill with UAr 1 week later
=> Report to LNGS Scientific Committee 4-28-15
First DarkSide Result

- 1400 kg-days background free exposure with atmospheric argon
- equivalent to 0.6 tonne-yrs with underground argon
- establishes rejection against electromagnetic backgrounds for t-yr exposures
TMB Replacement in Liquid Scintillator ..

Replaced 15 tons of TMB with 13.5 tons PC and 1.5 tons new TMB

- Rate in veto does not change with addition of the new TMB.
- Dead time from any activity in scintillator veto, 100 us window ~ 20% (cf original 300 kHz rate from 14C)

Rates after insertion of 0.5 t of TMB

Rates after insertion of 1.5 t of TMB
Calibration System

At PAB

In Cleanroom

entering veto vessel

deployed
Preliminary Neutron Calibration Data:

Red is 50% Nuclear Recoil acceptance contour measured in DarkSide-50; White is contour from SCENE data used in paper
Underground Argon:

Nearing end of a long saga

- Need 153 +/-3 kg;
- have shipped (by boat) 141 kg (left PAB 12/19/14) to arrive LNGS ..
- will have another 15 kg by end February – ship by air to LNGS ..
- final ‘polishing’ at LNGS using Fermilab-built gettering system
- LNGS Scientific Committee ‘expects’ report at April 28 meeting ..

Validated that the purified argon is detector quality:
Underground Argon: tested at PAB in SCENE apparatus

Good light yield, good slow component lifetime, good drift (not shown)

83mKr Peak:
32.1 + 9.4 keV (41.5 keV)

yield = 4.7 pe/keV
(yield AAr = 4.5 pe/keV in same apparatus)

4% Ar -> 99.99999%

Pulse shape spectrum

work of Tom Alexander
Computing Support – SCD & CCD

Fermilab plays essential role: base for all U.S. groups

Data transfer LNGS to FNAL – typically only a few hours behind data will come from CNAF

Data storage – we are using ~ 550 TB, arranged smoothly

Processing – typically not a load at all. One huge MC took 250,000 cpu hours; do not expect a repeat.

Reprocessing entire data set takes ~100,000 cpu hours.

Data rate with UAr will be much lower (2 Hz cf 15 Hz now)
Summary of DarkSide-50 status

Demonstrated power of Argon to reject electromagnetic backgrounds

Fixed the scintillator veto from radio-active TMB

Detector, DAQ, Data Transfer-Storage-Processing all working smoothly

First neutron and gamma calibration campaign completed

Going through final activities with atmospheric argon

Working hard with preparations for underground argon

Fermilab support has been and is essential and much appreciated
Back-ups
Liquid Phase; Gas Pocket above; Electric Field in both. ~ 1kV/cm (Liquid), Few kV/cm (gas)

WIMP interacts; Nucleus Recoils Argon produces light and free electrons

Electrons drift in liquid and are extracted into gas by field of 3 kV/cm into gas region where they produce secondary fluorescence (S2), proportional to number of e’s.

Argon produces scintillation light and allows long (meters) free electron drift.
Typical event waveform

Event data = 440 us x 38 x 250 MHz x 2 bytes ≈ 8.5 x 10^6 bytes..
Event rate from 39Ar decay ~ 50 Bq; trigger rate in ROI ~ 15 Hz..
DAQ readout rate ≈ 120 MB/s (fully live at this rate) – can go x 3 faster
Huffman compression factor ~ 5 => 25 MB/s to disk at LNGS, and dCache at FNAL

**** with underground (low-radioactivity) argon, trigger rate ~ 3 Hz or less *****
S1 signal shapes for

Electron event

Nuclear recoil event

Signal due to recoiling nucleus

Define \(f_{90} = \frac{300}{350} \)

Fraction of integral in first 90 ns
S1 & S2 signals

Electron event

Nuclear recoil event

Signal from electron energy deposition (lots of free electrons - large S2/S1)

Signal from recoil nucleus energy deposition (rather few free electrons – small S2/S1)

Use $\log(S2/S1)$ as discriminant
Underground Argon Purification at FNAL

original system design
Underground Argon Purification: Final System Schematic

Waste Condenser Booster Helium Separator (CB)

Waste

Recover UAr vented with He

Challenge #1 Removes helium

Challenge #2 Removes freeze-out Impurities

Challenge #7 Removes Oxygen

Challenge #6 Distillation to remove Methane

Challenges #3, 4, & 5 Distillation Column redesign and upgrades

Work of Henning Back (Princeton)