Observation of Pulsed Field-Emission from a Carbon-Nanotube Cathode a HBESL (E-1023)*

[on-going work]

presented by P. Piot (FNAL & NIU)

Fermilab’s All Experimenters meeting, April 28th, 2014

*sponsored by the DOE awards DE-SC0004459 to Radiabeam and DE-AC02-07CH11359 to the Fermi Research Alliance LLC.
High-Brightness Electron Source Lab (HBESL)

• **Mission:** R&D on e-sources and lasers

• **Facilities:**
 – ultra-fast laser system
 – 1.3-GHz RF gun+ beamline

• **Recent/on-going experiments:**
 – 2-photon e- emission from Cs$_2$Te,
 – field-emission from diamond arrays,
 – high-current field-emission from CNT
 – VUV light via inverse Compton scatt.
 – tailored e- bunch with laser spatio-temporal shaping.

P. Piot, All Experimenter meeting, Apr. 28, 2014
Field Emission (FE) & Carbon-nanotube (CNT) Cathodes

- Current density

\[j(t) = A(\phi)\beta_e^2 E_z(t)^2 \exp\left(-\frac{B(\phi)}{\beta_e E_z(t)} \right) \]

- FE is appealing: no need for an ultra-stable auxiliary laser system

- Single emitter \(\rightarrow\) small transverse emittances

- Array of field emitters \(\rightarrow\) high current w. reduced beam quality, or patterned beams

P. Piot, All Experimenter meeting, Apr. 28, 2014
Pulsed field emission

- Pulsed field emission can be realized by locating the field emitter in a t-dependent field
- single-frequency RF gun not ideal: rms emission time is
 $$\sigma_t \sim \omega^{-1} \left[\beta_e E_0 / B(\phi) \right]^{1/2}$$
- experiments at HBESL uses a 1.3-GHz gun…

P. Piot, All Experimenter meeting, Apr. 28, 2014
Experimental setup

[Image of experimental setup with annotations]

Mo cathode holder
Cathode substrate
rf gun
Cathode mount for DC tests
forward- and reflected-power diode signals
dipole magnet
e-bunch
solenoidal lenses
electromagnetic pick-up

[see also J. Hartzell et al., Proc. NAPAC’13 (2013)]
Fowler-Nordheim plot

radiabeam (DC test)
50 mA for 14 MV/m
(cathode #5)

about 22 MV/m
macroscopic field

P. Piot, All Experimenter meeting, Apr. 28, 2014
Beam current + beam density

P. Piot, All Experimenter meeting, Apr. 28, 2014
Observation of pulsed field emission

- electromagnetic pick-up located downstream of the electron source used to detect bunch e.m. fields
- observed 1.3 GHz and harmonic (up to 4th harm).
- inferred bunch length is ~ 50-70 ps
- no significant dependence on applied E field
Summary/Future

- Preliminary data on field emission from carbon-nanotube cathode are encouraging
- Current in excess of 300 mA have been observed
- Current stability was measured to be <5% over ~4 hours
- Smaller-area cathode being prepared at CNSI
- Next round of tests (June) will focus on beam emittance measurements
Credits

• At Fermilab the following people crucially contributed to the success of this experiment:
 – P. Prieto and H. Pfeffer (fixed our pulse transformer),
 – J. Reid, and T. Kubicki (RF support)
 – N. Eddy (fast scope)

• Support from AD/APC
 – E. Harms, S. Nagaitsev, and V. Shiltsev.

• NIU Grad. students: F. Lemery, B. Blomberg (cathode installation, RF measurements)