T-992 Diamond and 3-D Detector tests at FTBF

Jennifer Ngadiuba
INFN, Milano

ALL-EXPERIMENTERS’ MEETING

November 14, 2011
Particle Fluence at SLHC

SLHC Upgrade @ \(\mathcal{L} = 10^{35} \text{cm}^{-2} \text{s}^{-1} \)

\[\rightarrow L = 2500 \text{ fb}^{-1} \text{ after 5 years} \]

At \(R = 5 \text{ cm} \) the radiation fluence will be around \(10^{16} \text{n-eq/cm}^2 \)!!

Being so close to the IP, the Pixel Detector requires an excellent radiation hardness.

Test Beam Goal

- our goal is to test the candidates for the SLHC upgrade before and after irradiation to compare the performances and understand if we have a technology capable of withstanding the enormous fluences.

- efforts has been focused on two different sensor types:
 - 3D Silicon sensors
 - Diamond sensors

- all the different sensors have been tested using the same Read Out Chip (ROC) in order to have a fair comparison between all candidates.
3D Silicon & Diamond Sensors

3D Sensors

- first proposed by Sherwood Parker of the University of Hawaii and colleagues in 1995
- p^+ and n^+ electrodes are arrays of columns that penetrate through the silicon bulk

lateral depletion: good for rad-hard

- shorter collection path
- lower full-depletion voltage
- less carrier trapping
- faster charge collection

Diamond sensor - intrinsically rad-hard

- high bandgap and high displacement energy
- fast charge collection
- absence of thermally generated leakage current
Setup

- Telescope with 8 silicon planar pixel sensors (4 upstream and 4 downstream) with 2 Detectors Under Test (DUTs) in the middle
- Data acquisition with CAPTAN system

- Our software allowed us to check almost real time the data quality
Collaboration

- Many different institutions and collaborators for the CMS pixel upgrade
 - Fermilab
 - S. Kwan, A. Prosser, L. Uplegger, R. Rivera, J. Andresen, J. Chramowicz, P. Tan, C. Lei, F. Yang
 - Purdue
 - E. Alagoz, O. Koybasi, G. Bolla, D. Bortoletto, M. Bubna, A. Krzywda, K. Arndt
 - Colorado
 - M. Dinardo, S. Wagner, J. Cumalat, F. Jensen
 - Texas A&M
 - I. Osipenkov
 - Milano
 - L. Moroni, D. Menasce, S. Terzo, J. Ngadiuba
 - Torino
 - M. Obertino, A. Solano
 - Buffalo
 - A. Kumar, R. Brosius
 - IHPC Strasbourg
 - J. M. Brom
Test beam preliminary results

- A large number of detectors has been tested on beam and for each of them several scans has been made
 - threshold scan
 - bias scan
 - angle scan
- Preliminary studies has been made just on few runs
 - Resolution
 - Efficiency
 - Charge

These are just preliminary studies

↓

Work in progress!!
3D sensor resolution - Preliminary

X Residuals Cluster Size 1
\(\sigma = 33.36 \, \mu m\)

Y Residuals Cluster Size 1
\(\sigma = 46.2 \, \mu m\)

X Residuals Cluster Size 2
\(\sigma = 26.83 \, \mu m\)

Y Residuals Cluster Size 2
\(\sigma = 19.81 \, \mu m\)

Residuals are not yet optimized but already in good agreement with expectations
3D sensor efficiency - Preliminary

CNM sensor
produced at Centro National de Microelectronica (Barcelona, Spain)

Efficiency = 97.3%

FBK sensor
produced at Fondazione Bruno Kessler (Trento, Italy)

Efficiency = 97.6%
most of the inefficiency is due to particles passing through the p^+ and n^+ electrodes

but part of this effect is also due to the fact that both FBK and CNM are double-sided with about 30\(\mu\)m from the edge for each electrode and so there’s a slight distortion of the field near the edge
10^{14} n-eq/cm2 Irradiated FBK resolution - Preliminary

X Residuals Cluster Size 1

$\sigma = 31.28 \mu m$

Y Residuals Cluster Size 1

$\sigma = 48.93 \mu m$

X Residuals Cluster Size 2

$\sigma = 23.26 \mu m$

Y Residuals Cluster Size 2

$\sigma = 30.01 \mu m$

Also for the irradiated we don’t see a particular degradation of the resolution
10^{14}\text{n-eq/cm}^2\text{ Irradiated FBK efficiency - Preliminary}

Efficiency = 77.8%

- inefficiency due to particles passing through the electrodes
- but clear effects caused also by a too low field applied (bias = 15V)
 → need to increase the bias voltage to obtain better efficiency results
Diamond efficiency - Preliminary

- cause of the higher bandgap the charge released by particles is about less than half of what we get with our silicon detectors
- since we’re using the same CMS ROC optimized for silicon planar design it is important to optimize correctly its registers to match the diamond requirements
- we believe we operated the detector with a threshold too high

\[\text{Efficiency} = 43.4\% \]

for these reasons we’ll have another test beam run in January exclusively dedicated to diamond sensors
Conclusions and future plans

- we successfully tested many 3D and diamond detectors
- these preliminary results help us to understand their operational parameters which need to be optimized well to make them work correctly
- for these reasons we’ll come back to the test beam in January with few selected detectors
- at the last test beam we were not able to test the irradiated devices because after the irradiation none of them worked so this time we irradiated them only up to 10^{14}n-eq/cm^2
 - we will irradiate them much more in December and then come back to test them in March
- we have all the tools ready to do the analysis although they still need some improvements