SCENE Run Report

Hugh Lippincott
All Experimenter’s Meeting
Nov. 25, 2013

On Behalf of SCENE Collaboration: Scintillation and Ionization Efficiency of Noble Elements

Member Institutions:
Liquid Argon (LAr) as WIMP Target

Scintillation / S1: Excellent pulse shape discrimination (PSD) of nuclear (NR) versus electron recoils (ER)

Single-phase
S1 only

Ionization / S2: enables position reconstruction and additional ER discrimination

Dual-phase
S1+S2

DEAP
CLEAN

DarkSide
ArDM

AEM, Nov. 25, 2013
Scintillation and Ionization Yield for Nuclear Recoils

- Knowledge of those quantities is required to convert a NR signal to the deposited energy
- They decide the energy threshold of LAr detectors and inferred WIMP mass

Scintillation:
Yield for low energy (<25 keV$_r$) NR has not been precisely determined in the literature (the famous L$_{eff}$ parameter)

Effects of applied electric field (both on PSD and quenching factor) need to be characterized for two-phase Ar time projection chamber (LAr-TPC)

Ionization:
No comprehensive measurement of the ionization yield has been published

The Challenges

1. Compact LAr detector to minimize multiple scatterings

2. Unambiguously select NRs of a known energy
SCENE setup

~ 10^{-4} neutrons per beam pulse through LAr-TPC

- period = 101.5 ns or its multiples
 used 203 ns
- max current = 300 nA
 used ~50 nA

- beam angle spread at target < 0.006 deg
- ±1 keV mean uncertainty
- ±2 keV spread
- 10 MeV maximum
Experimental Layout

EJ301: Organic Liquid Scintillator Detector from Eljen Technology

Note: Polyethylene shielding between LiF and EJ301 omitted for clarity

200 μg/cm²

25.4°
SCENE Schedule

May 20-27, 2013 - Scheduled beam run canceled after 1-2 days due to beam failure

June 17 - July 2, 2013 - Two week beam run dedicated to S1 light - Results in first physics publication, now accepted to PRD
SCENE Schedule

May 20-27, 2013 - Scheduled beam run canceled after 1-2 days due to beam failure

June 17 - July 2, 2013 - Two week beam run dedicated to S1 light - Results in first physics publication, now accepted to PRD

Oct. 21 - Nov. 4 - Two week beam run dedicated to S2 measurements
Run statistics

200 ug/cm² LiF target

TPC trigger rate (alone) between 1 kHz-4 kHz during run
 -Important to keep overall rate down to protect the PMTs

Three proton energies
 2.305, 2.921, 3.600 MeV

5 Nuclear recoil energies
 7.5, 16.5, 26.1, 35.7, 57.6 keV

5 drift fields at each energy S2 runs
 50, 100, 200, 300, 500 V/cm

~500 NR events per setting (per NR energy per drift field)
Run statistics

30-70 microsecond drift lifetime
 - Slow degradation throughout the run, could be recovered by circulating through the purification loop for several hours

5-6 photoelectrons/keV light yield
 - Top PMT single photoelectron and collection efficiency sagged with time
 - Collection efficiency monitored continuously with external LED
 - Light yield monitored via 83Kr beta source (~40 keV, continuously injected into chamber)
Results (10.8 keV, $E_{\text{drift}} = 1000$ V/cm)

TPC\textsubscript{tof}: time difference between the proton-beam-on-target and the TPC signal

N\textsubscript{tof}: time difference between the proton-beam-on-target and the neutron detector signal

F90: PSD parameter in LAr the fraction of light detected in the first 90 ns of an event

N\textsubscript{psd}: peak over area in the neutron detector
Future Plans

- Finish analysis of both June and October data leading to a second paper on LAr ionization yield from nuclear recoils (including L_{eff})

- Liquid Xe run in March with new TPC under construction at UCLA
 - Hugely relevant for low mass WIMP controversies, particularly in light of the LUX result
Many thanks to:

Fermilab staff at PAB: *Bill Miner, Cary Kendziora, Ron Davis, Kelly Hardin

Notre Dame Institute for Structure and Nuclear Physics staff and students, especially those who took beam shifts during our run

Sidney Cahn and Kevin Charbonneau at Yale for help with the krypton source

G. Korga and A. Razeto for low noise amplifiers