Beam Loss Monitor Upgrade

J. Lewis
All Experimenters’ Meeting
2 May 2005
Motivation

• Don’t do this again.

Loss profile: Tokyo-pot 16-house quench
Response: Abort Upgrade

• **New Loss Monitor electronics**
 – Abort logic designed for collider operations
 – Improved diagnostic capabilities

• **Improvements to QPM**
 – Faster response
 – Running many months
 – Ask the Tevatron guys for details
Further Motivation

- **Scope broadened to improve high-intensity proton operations**

- **Tevatron**
 - Protect magnets from beam-induced quenches
 - Legacy system is not sufficiently flexible to use during complex operations cycle
 - Designed for fast-cycle fixed-target operations

- **Main Injector**
 - **Greater diagnostic capability needed for high-intensity operation**
 - Limit activation of accelerator components
 - Intensity 5x greater with NUMI operation
 - Maximize proton flux

- **Booster**
 - **Improved diagnostics**
 - Limit activation
 - Maximize flux
Existing System Characteristics and Limitations

• **Signal properties**
 – Good resolution and dynamic range
 – Fast leading edge response, slow discharge

• **Tevatron Aborts**
 – Fast: ~ 50-100 μs
 – Fires on single channel over threshold
 – Minimal compatibility with multiple machine configurations
 • Two abort levels, high and low field
 • Abort disabled when antiprotons are in the machine

• **Read out**
 – Updates slowly: ~ 3 ms period
 – Fast access to one channel per chassis
 • 24 signals multiplexed in MI

• **Difficult to enhance and maintain**
 – 23 years old
 – Read out via Multibus(!) with obsolete software
Requirements for New System

- Robustness: No false aborts
- Reliability: No missed aborts
- Respond to changing machine configurations
- Access to data from all channels
- Maintain resolution
 - System designed around low-noise integrator
- Large dynamic range
 - 0.02 Rad/s in 1 ms to 100 Rad in a single turn
- Good time resolution and depth
 - Multiple integration periods, each with >4k sample history
- Include experiments in Tevatron BLM system
 - Two Camac crates with special electronics hard to maintain
System Overview

- Integrate BLM current and digitize every ~20 μs
 - Tevatron turn frequency or MI frequency ÷2
- Form three running sums for additional integration periods
 - Programmable time constants
 - Example: 1ms, 50ms, 1s
 - Maintain history of >4000 cycles for each period
 - Also 8k injection turn-by-turn
 - Also record integrated loss through each MI cycle
- One abort threshold per integration period for each channel
- Abort requirements changed in response to machine states
 - Thresholds, masks, multiplicities
- Safe operation
 - Isolated from VME and Ethernet
 - Embedded microprocessor
 - Custom local bus on J2
Components

- **Digitizer Card**
 - 4 integrator channels
 - Deadtimeless operation
 - Form running sums
 - Compare to thresholds
 - Raw data buffers
 - Max 15 per crate

- **Timing Card**
 - Provides synchronous clock
 - Keeps time buffers
 - Decodes machine clock events

- **High Voltage Card**
 - Power up to 60 channels

- **Control Card**
 - Keeps diagnostic data
 - Running sum data
 - Updates abort requirements on state changes

- **Abort Card**
 - Reads abort data from Digitizers
 - Compares to mask and multiplicity requirement

- **Crate**
 - Wiener 6U VME chassis
 - Low-noise power supply
 - Custom J2 backplane
Status

• Digitizer
 – Extensive standalone testing of prototype
 – Updating design to extend functionality

• Timing Card
 – Testing prototype

• Crate
 – All received.

• Abort and HV Cards
 – Design nearly complete

• Controller
 – Firmware working in simulation
 – Card schematic done
Personnel

- **Alan Baumbaugh (PPD/EED)**
 - System design, Control card software
- **Kelly Knickerbocker (PPD/EED)**
 - Timing card, infrastructure
- **Craig Drennan (AD/BS)**
 - Digitizer
- **Marvin Olson (AD/ID)**
 - System support
- **Cecil Needles (PPD/EED)**
 - Digitizer Firmware
- **Mike Utes (PPD/EED)**
 - Abort Card
- **Jonathan Lewis (PPD/CDF)**
 - Management
- **Stephen Pordes (AD/ID)**
 - Wisdom and advice (solicited or otherwise)
- **Randy Keup (AD/ID)**
 - Applications programs
- **Brian Fellenz (AD)**
 - HV card
- **Jin-Yuan Wu (PPD/EED)**
 - Control Card
- **Charlie Briegel, Brian Hendricks (AD/Controls)**
Schedule

• Beam tests starting soon
 – Can do extensive testing with VME readout before Controller complete
 • Pre-production Digitizer, Controller and Abort card added in June
 – Duplicate BLMs to compare to legacy system
 • Tevatron: 6 at E1
 • Main Injector: 2 at MI60
 – Develop and test software
 – Get operational experience

• July 2005: Preproduction test

• Install crates when old BPM electronics removed
 – Get host CPUs running ASAP
Installation Schedule

• Modules available to install in November
 – Tevatron and MI

• Can install new system without removing old
 – Easy cabling changeover

• Can establish operations with small fraction of channels then move balance of cables
Experience

• Studies with 2-channel digitizer test card
• Understand signals and noise
 – Selected sites in Tevatron, MI and Booster
• Check calibration for Tevatron
 – Old system: 50nA ↔ 0.84 Rad/s (1 Rad ↔ 60nC)
 – New system: 50nA ↔ 56 counts (20μs bins)
• Explored noise suppression
 – Wide channel-to-channel variation
 – Filters
 • Chokes for common mode
 • Resistor to increase effective integration time
 – Running sums
MI: LM402G full cycle

~0.2pC/div (per 20μs)

Injection

Transition

25 ms/div
Proton Injection Loss During Shot Setup 8/22/04
LMF12: Old and New

Losses in F-sector from 120 GeV beamline during stacking

~0.2pC/div (per 20µs)

Small Choke

Small Choke, Smooth @ 100µs

LMF 12
0.025 R/s
per div

100 ms/div

1 ms/div
Conclusions

- In past year, we have completed most of the design work for a new BLM readout system
- Improved diagnostics will improve accelerator performance
- Greater flexibility will enable better protection of equipment
- Expected to be online February 2006
Backup Slides
Custom Digitizer Card

- **4 Loss Monitor Channels**
 - Dual Charge Integrator (Burr Brown ACF2101)
 - Alternately integrating or being readout and reset
 - Provides continuous measurement
 - 50 kHz maximum sample rate

- **FPGA**
 - Controls integrators
 - Reads ADCs
 - Stores readings (raw measurements)
 - Forms three running sums
 - Compares readings and sums to programmed thresholds
 - Results sent to Abort Card

- **Raw data buffers**
 - Running circular buffer
 - Triggered buffer for turn-by-turn studies

- **Maximum 15 cards per crate**
Other Modules

• **Timing Card**
 – Provides synchronous integration clock to digitizers
 • External input Clock reference or internal oscillator
 • Can also be divided (e.g. AA÷2 for MI)
 – Time stamp buffer in sync with the digitizers’ raw data buffers
 – Decoder to receive clock events

• **Abort Card**
 – Receives abort info from the digitizer cards, compares against abort masks and multiplicities and makes the abort signals
 – One abort input for each time-range from each channel
 – Separate decisions for each time-range
 • Independent masks and multiplicity thresholds
 – Aborts are formed in < 20 microseconds
 – Also transmits abort data on ring-wide serial link
Other Modules, 2

• **Controller Card**
 – Communicates with other cards on control bus
 • Bus master
 – **Isolates Abort functions from outside world**
 • FPGA VME slave and control-bus eZ80 access shared memory
 – Stores loss data buffers for running sums and provides to VME
 – Stores BLM thresholds and abort requirements for each machine state
 • Loads parameters into digitizer and abort concentrator cards based on machine state

• **Front-end CPU**
 – Motorola MVME 2xxx for communication with ACNET

• **High Voltage Card**

• **Wiener VME Chassis with low-noise power supply**
Proposed Machine States

- Tevatron Operation
 - Proton Studies (i.e. uncoalesced batch at 150)
 - Proton Injection
 - Activate Separators
 - Pbar Injection
 - Ramp
 - Squeeze
 - Scraping
 - HEP

- F Sector (change mask)
 - P2 Beam
 - P2 & P3 Beam
 - F-Sector Restore

- Experiments
 - CDF Silicon Biased
 - CDF Silicon Off
 - D0 Silicon Biased
 - D0 Silicon Off
Booster: LM23

~1pC/div (per 20μs)

1ms/div

720 Hz noise

Raw

Choke

Choke+25k

Signal
MI: LM402G

~0.4pC/div (per 20μs)

5 ms/div

- Large common-mode rejection from small choke
- Injection loss shows up cleanly
Worst Case Noise: LM322

~2pC/div (per 20μs)

1ms/div

Raw

80 ft Choke

Choke+25k
Smoothing: LM522F

~0.1pC/div (per 20μs)

Raw
Smooth @ 1ms
Small Choke +25k Smoothed

10 ms/div