Rapid Accumulator to Recycler Transfers Update

E. Harms
AD/Pbar source
20 June 2005
Frequent Antiproton Transfers

- Introduction
- Progress report
 - Facets
 - Speed
 - Efficiency
- Summary
Frequent Antiproton Transfers - Introduction

- Run II Upgrade project
- Motivation for speeding process
 - Increased stacking rates only possible by not building a core - empty the Accumulator when it 'fills up'
 - Maintain as high an average stacking rate as possible - minimal impact on stacking
- Expected set-up time - ultimate goal
 - move from shot set up to transfer when full
 - actually, automated transfers as they occur on event now
 - Unstack/transfer time now ~30 seconds, driven by time to adiabatically bunch, accelerate, and extract pbars from the Accumulator
Frequent Antiproton Transfers - Introduction

- Requirements
 - **Time**
 - Empty stack every 30 minutes
 - Transfers of order one minute
 - **Stack size**
 - 40 X 10^{10} or less
 - **Emittances**
 - Transverse: 10\pi mm-mrad (95% normalized)
 - Longitudinal: 10 eV-s
 - Up to 50% dilution allowable
Intermediate Goals (since early April)
- 15-minute transfers
- High & Consistent Efficiency
- No reverse proton tune up

Tradeoffs
- Speed
- Efficiency
- Emittances
- Stack size
Frequent Antiproton Transfers - Current State

43:22 ‘normal’ amount of time vs. 57:55 in early April

20:36 to load pbars (3 minutes/transfer 7 transfers/episode)
Ready to transfer after 17:40 from stacking stop
Frequent Antiproton Transfers - Current State

Rapid Transfer Efficiency

- Accum to MI
- Accum to RR

Shot #

Rapid Transfer Update - AEM
Frequent Antiproton Transfers - Current State

Rapid Transfer Efficiency vs. Stack Size

- Accum to MI
- Accum to RR

Rapid Transfer Update - AEM
Frequent Antiproton Transfers - Current State

- **Changes to date**
 - MI orbit smoothing/tuneup (SY120 off) before stacking is stopped
 - MI to Accumulator tuneup only when efficiency drops
 - Sample and save Beamline orbit on every set up
 - ~ 1 tuneup/week
 - Sequencer optimization
 - See above
 - Remove unnecessary or redundant steps
 - Fewer checks
 - Stack sooner
 - More work to do
 - NuMI running during set up
Frequent Antiproton Transfers - Current State

Ongoing work

- **Current Focus on efficiency rather than speed**
 - Collect MI extraction position data for reverse protons
 - Looks okay
 - P1 - AP3 orbit data
 - SEM grids
 - Difference between reverse protons and pbars?
Frequent Antiproton Transfers - Current State

- Identical beam line settings restored
- Set-ups 1 week apart
- Consistent cusps?
Frequent Antiproton Transfers - Current State

- **Ongoing work**
 - **Next steps/tools**
 - Beam line BPM upgrade
 - MI injection damper
 - Ramp AP1 power supplies
Frequent Antiproton Transfers - Diagnostics

- Beam line BPM upgrade status
 - Assembly and procurement largely complete
 - Front end software complete
 - Application software in progress
 - First system installed at F23 for AP1
 - Timing and system shakedown in progress
 - Test data with beam being gathered at 53 MHz and 2.5 MHz
 - 3 BPM's/plane instrumented
 - Complete later this summer
Frequent Antiproton Transfers - Summary

- Greater focus on faster and more efficient Accumulator to Recycler transfers
- Transfers are faster, but not yet 15 minutes
 - Stack size/# of transfers
 - No Reverse Proton tuning
- Working to understand source(s) of drift in efficiency
- More tools under development