Prototype CMS Pixel Luminosity Telescope (PLT) at MTest

Rutgers University
Oleksiy Atramentov
Anthony Barker
Dmitry Hits
AJ Richards
Steve Schnetzer
Bob Stone

University of Tennessee
Bill Bugg
Matt Hollingsworth
Stefan Spanier

Vanderbilt University
Will Johns
The Pixel Luminosity Telescope (PLT)

- Dedicated stand-alone luminosity monitor for CMS
 - independent of CMS trigger, other detector components
- Simple device stable over lifetime of CMS
- Precision measure of relative bunch-by-bunch luminosity
 - statistical precision of 1% in real time (a few seconds)
- Absolute luminosity calibration on:
 - electroweak process (≈ 5%)
 - Optical Theorem and forward scattering (≈ 2%)
 - QED process (≈ 1%)
- Small systematic errors
 - designed to be below 1%
 - linear over full range of luminosity
- Self monitoring and calibrating
 - backgrounds
 - efficiency
PLT Basic Design

- **Telescope Arrays**
 - eight telescopes per CMS end
 - location: $r \approx 5$ cm, $z \approx 1.75$ m

- **Telescopes**
 - three planes
 - total length 7.5 cm

- **Telescope Planes**
 - diamond pixel sensors
 - active area 4.0 mm \times 4.0 mm
 - bump-bonded to PSI46v2 pixel ROC

- Measure number of 3-fold coincidences in each bunch crossing (40MHz) using fast-or outputs of the PSI46 pixel chip

- Readout full pixel hit information of each plane at 1 to 10 kHz
Location of PLT

- End of Be section of beam pipe (~ 1.7 m from IP)
- Just outside of beam pipe (~ 5 cm from beam line)
CMS PSI46 pixel chip has “fast” multiplicity counting built in

- Double column architecture
- Fast-Or output level
 - 0, 1, 2, 3, ≥4 double column hits
 - each bunch crossing
- Individual pixel thresholds adjustable
- Individual pixels can be masked
- Full pixel readout
 - address and pulse height of hit pixels
 - every L1 trigger

Diamond sensor
52 x 80 pixels
150 µm x 100 µm

8 mm
active area
8 mm

Monday, April 12, 2010
Diamond Sensors

- Radiation hard (few \(\times 10^{15} \) p/cm\(^2\))
- No need for cooling
- Full charge collection < 0.2 V/\(\mu \)m
 - 18,000 e\(^-\) signal for 500 \(\mu \)m diamond
 - Landau 60% narrower than for Si
- Pulse height well separated from pedestal
 - compare poly crystalline diamond
Two Complimentary Readout Modes

- **Fast Or Output**
 - every bunch crossing (40 MHz)
 - level → number of double columns hit
 - bunch-by-bunch luminosity
 - abort gap particles

- **Full Pixel Readout**
 - 1 kHz to 10 kHz rate
 - hit pixel addresses and pulse heights
 - powerful diagnostic for fast hit output mode
 - corrections for accidentals and overlaps
 - pixel efficiencies
 - IP centroid measurement
 - beam halo
Telescope

Pig tails

diamond detector
bump bonded on PSI46 ROC

Bias HV

Hybrid board

HDI (4 layer flex circuit)
- TBM (chip communication, readout)
- PLT driver chip (amplifies analog FO)
- low/high voltage distribution
Custom Front-end Digitizer

- Same hardware as the standard CMS Pixels System FEDs.
- Modify firmware for hit data.
- Produce 3-fold coincidence for each telescope
- Maintain histogram for each telescope (one entry for each 3564 crossings per orbit)
- Strip out hit data for comparison with PLT pixel data in response to TTC trigger, include bunch crossing number.
Telescope System Test

- Optical Readout
- Configuration and *in situ* detector calibration & trimming
- Prompt analysis for immediate feedback.
Meson Test Beam Facility

- 120 GeV proton beam (6am - 4pm)
- 3mm by 10mm beam profile
- 4sec/min/spill, 5k trigs/min
- 0.7 M triggers

Monday, April 12, 2010
Telescope Setup

Scintillators, 6mmx6mm

120 GeV
Taking Data

- Team: 4 faculty, 1 postdoc, 4 grad students
- Detailed and prompt analysis of the ongoing runs
- Developed a number of useful tools
- Built experience in solving realistic problems

Monday, April 12, 2010
Pixel Yields

- Pixels at the boundary have different yields and charge collection and excluded from the analysis
- Noisy pixels could be masked out if they could not be trimmed out
FastOR vs TDC

- Can determine TDC timing for triple intime coincidence and remove early fastor’s
- Late coincidences contribute to the luminosity uncertainty
• Relative plane to beam alignment
 - plane 1 to 2
 • 30um in x
 • 50um in y
 - plane 1 to 3
 • 410um in x
 • 220um in y
Tracking

- Define cluster: group of neighboring “hit” pixels
- Define cluster position: center of gravity
- Correct for relative plane rotation
- Correct for relative plane offset
- Select events with one and only one cluster in each plane (>90% of events with hits in all three planes)
Pulse heights

- Require single cluster in all three planes
- For Plane c, require hit in regions of Planes a and b such that track is certain to pass through fiducial region of Plane c
- Plot pulse height summed over cluster

![Graphs showing pulse heights for different planes](image-url)
Conclusions

- A lot of help from Fermilab w/ beam test logistics!
- Successful test of optical readout of three-plane prototype PLT telescope
- Ongoing analysis of test beam data
 - Study fast-or timing
 TDC of trigger and clock
- The prototype meets all design requirements
- Pulse height for high energy protons: \(\sim 23k \text{ e}^-\)
- Pulse heights well above pixel threshold range
- Tracks readily and clearly reconstructed
- Rapid alignment (translation and rotation) of planes with beam
Schedule/Future Plans

• Passed CMS Engineering Design Review last fall
• Ongoing analysis of the test beam data
• Irradiated telescope planes ~ full LHC lifetime (2×10^{15} p/cm2)
 - ongoing analysis
• In production mode
 - characterization and testing of 48+ planes w/ Sr90
• PLT ready for installation in CMS by mid-fall 2010
On course for PLT installation during 2010-2011 shutdown
Backup
Data Acquisition

- **Data Acquisition**
 - **Custom FED**: Set
 - **Standard FED**: Set
 - **Spy Data**: Set
 - **PLT Trig**: (1 kHz)
 - **Pixel Data (Addr. Pulse Ht.)**: (1 kHz)
 - **Hit Outputs 40 MHz**
 - **FEC**
 - **TTC**
 - **Hist. 3-fold coincidences (3564 channels) X 21**
 - **Raw FO 1 kHz (~16 kB/s)**
 - **16 Histograms 1 Hz (~230 kB/s)**
 - **Raw FO**: 1 kHz (~16 kB/s)
 - **PLT PC (1 or more)**
 - **Track Reconstruction**
 - **Diagnostic Comparison**
 - **Luminosity Calculation**
 - **Bunch Luminosity**
 - **Beam**
 - **Hot Spots**
 - **Orbit Gap**
 - **Histogram Sums (16)**
 - **Combined Histogram**
 - **PLT EDR**

Notes
- **11/5/09**
- 12/04/10