# Thermal link design for conduction cooling of SRF cavities using cryocoolers

R. C. Dhuley<sup>1</sup>, R. Kostin<sup>2</sup>, O. Prokofiev<sup>1</sup>, M. I. Geelhoed<sup>1</sup>, T. H. Nicol<sup>1</sup>, S. Posen<sup>1</sup>, J. C. T. Thangaraj<sup>1</sup>, T. K. Kroc<sup>1</sup>, R. D. Kephart<sup>1</sup> <sup>1</sup>Fermi National Accelerator Laboratory, Batavia, IL 60502, USA, <sup>2</sup>Euclid Techlabs, LLC, Bolingbrook, IL 60440, USA

## The opportunity

A completely cryogen-free superconducting radio frequency (SRF) accelerator can be developed by conductively cooling Nb<sub>3</sub>Sn coated niobium cavities using regenerative cryocoolers. The accelerator can serve as a compact, mobile source of high average power electron beams for a number of industrial applications [1].



Rendering of a cryogen-free SRF electron beam accelerator based on conduction cooling by a two-stage 4 K cryocooler. All cryogenic components are enclosed in a vacuum vessel. Cryocooler Stage I cools the thermal shield to ≈50 K while Stage II maintains the SRF cavity at ≈4 K.

# Method of determining the required link thermal conductance

Step 1: Determine required number of cryocoolers

Cavity parameters:

| Parameter                                          | 650 MHz                    | 1.3 GHz       |
|----------------------------------------------------|----------------------------|---------------|
| G [Ω]                                              | 265                        | 270           |
| R/Q [Ω], per cell                                  | 150                        | 115           |
| L <sub>acc</sub> [m], per cell                     | 0.231                      | 0.115         |
| $R_{res}$ [n $\Omega$ ] for Nb <sub>3</sub> Sn     | 10                         |               |
| R <sub>BCS</sub> (T) for Nb <sub>3</sub> Sn        | Calculated using SRIMP [2] |               |
| Estimated dissipation at 5 K [W], per cell (total) | 1.72<br>(7.8)              | 0.86<br>(7.8) |

Cryocooler capacity:  $Q_c[W] = 0.24T_c^2 - 0.56T_c + 0.12$  (2.4 < T<sub>c</sub> [K] < 5.8)

- need four cryocoolers for the multi-cell cavities

Step 2: Graphically solve for cavity and cryocooler temperature, considering steady state heat flow balance

$$\frac{(E_{acc}L_{acc})^{2}R_{s}(T_{h})}{(R/Q)G} = K_{link}(T_{h}, T_{c}) * (T_{h} - T_{c}) = Q_{c}(T_{c})$$

Cavity dissipation, per cell

Heat flow through thermal link

Cryocooler capacity, per cell

Step 3: Evaluate the required thermal conductance

$$K_{req} = \frac{Q_c}{T_h - T_c}$$





(a) Comparison of cavity and cryocooler operating temperatures for a given heat flow and (b) Required thermal conductance between the cavity and the cryocooler for stable operation at a given  $T_c$ .

# Challenge: design of link to achieve good thermal contact between cavity and cryocooler

### Minimize the temperature difference between cavity and cryocooler

choose high thermal conductivity metal for the link

low thermal contact resistance

Devise a practical method of attaching thermal link to the cavity

anchor the link near the cell equator (elliptical surface) where most RF heat is dissipated



Design challenge: connecting the cavity and cryocooler with a high thermal conductance link

# Thermal link: design and performance

Mechanical design: High purity aluminum strips bolted to niobium rings welded around cavity equator



Going from the cavity to the cryocooler, the link has:

- Nb rings welded to the cavity,
- Al rings bolted to the Nb rings [3],
- Al ear-straps bolted to the Al rings, and Al bus-bars bolted to the ear-straps.

The thermal link is illustrated for a single cell cavity.

**Evaluation of link thermal** conductance via FEM simulations



Simulation geometry [4] and steady state temperature distribution of the cavity and thermal link. Boundary conditions:

- constant  $T_c$  on the Al bus,
- heat flux  $Q_c(T_c)$  on the RF surface.

Sample result is shown for a 650 MHz cell and  $T_c = 4.2$  K.



Calculated link thermal conductance (bold solid line) compared with the required conductance for the cases of:

- ideal coating with no static load,
- static load- 0.1 W for 650 MHz: 0.05 W for 1.3 GHz.
- and imperfect coating with 50% higher surface resistance. Intersection of link conductance with the required conductance

curve denotes the cryocooler operating temperature.

### Present work

### We have designed a thermal link for cooling SRF cavities with the following:

- 4.5-cell 650 MHz and 9.cell 1.3 GHz (each nearly a meter long)
- Nb<sub>3</sub>Sn coated RF surface
- beam energy of 10 MeV (average accelerating gradient of 10 MV/m).

The selected cryocooler is Cryomech PT420 (capacity 2 W @ 4.2 K)

The thermal link is made of high purity (5N) aluminum

# Takeaway

A thermal link design and analysis that will enable cryocooler-cooled cryogen-free compact accelerators for industrial applications of beams.

### References

[1] R. Kephart et al., Proc. SRF 2015, 1467-1773, 2015.

[2] SRIMP code, available at <a href="https://www.classe.cornell.edu/~liepe/webpage/researchsrimp.html">https://www.classe.cornell.edu/~liepe/webpage/researchsrimp.html</a>. [3] R. C. Dhuley et al., *Cryogenics* 93, 86-93, 2018.

[4] R. Kostin et al., Proc. IPAC2018, 2697-2699, 2018.

### Acknowledgement

This presentation has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

