Accelerator Operations and Strategies

R. Dixon
Overview

- Tevatron Collider Highlights
 - Performance over the past year
 - Plans for improvements and strategies
 - Luminosity models and projections

- Neutrino Performance
 - Performance in 2006/2007
 - The path to future neutrino beams

- Test Beam
Accelerator Operations Overview

- **Collider Run 2**
 - Tevatron proton-antiproton collisions to CDF and D0
 - Design goal = 8 fb\(^{-1}\) by end FY09
 - Delivered > 2.8 fb\(^{-1}\) so far
 - Integrated luminosity has made dramatic increases during the past year

- **Neutrino Program**
 - **MiniBooNE**: 8 GeV protons from Booster
 - 8.9 E20 protons-on-target (neutrino/antineutrino modes combined)
 - **NuMI**: 120 GeV protons from Main Injector (MI)
 - 3.29 E20 protons-on-target
 - Proton Plan & beyond: increase proton beam power

- **Switchyard 120 – Meson Test Beam Facility (MTBF)**
 - Deliver 120 GeV protons and 1-64 GeV secondaries π, K, p, e, μ
 - Run in parallel with Run 2 and neutrino program
 - 1 slow/fast spill from MI every 60 seconds ~12 hr/day
Total Run II Luminosity

Integrated Luminosity 2830.18 (1/pb)

~ 1.4 fb$^{-1}$ since June 2006

2007 Users Mtg. - R. Dixon
Run II
Delivered Luminosity June 06 to June 07

Integrated Luminosity

\[\sim 1.4 \text{ fb}^{-1} \]

Avg Int=26 pb\(^{-1}\)/wk

>34 pb\(^{-1}\)/wk

Feeder 46b Fault

E4 Cryostat vacuum failure

2007 Users Mtg. - R. Dixon
Integrated Luminosity for January 2007

Delivered Luminosity: Jan-01-2007 to Feb-01-2007 167.171 (1/pb)

Record Month:
167 pb^{-1}

38 pb^{-1}/week
Comparing before and after 2006 shutdown data

- Peak Luminosity increased by 62% (180 E30 --> 292 E30)
- Weekly integrated Luminosity Record increased by ~ 75% (25 pb⁻¹ --> 45 pb⁻¹)
- Monthly integrated luminosity increased by ~ 95% (85 pb⁻¹ --> 167 pb⁻¹)
- Numerous peak luminosity records were set during this period
- One hour stacking record-- 23.1 ma/hr
- Antiproton accumulation for one week-- 2800 E10
Tevatron Highlights

- Reliability
 - Replaced all ≈1200 LHe Kautzky valves (cause of 2 FY06 dipole failures)
 - Modifying quench protection system to allow faster beam aborts
 - Cog antiprotons out of abort gap for acceleration to prevent needless quenches

- More antiprotons with smaller emittances to HEP
 - Increased stacking rate in Antiproton Source
 - New working point in Recycler
 - Better antiproton lifetime @ 150 GeV from new helical orbit, reduced beam-beam

- Injecting ≈10% more protons

- Improved luminosity lifetime
 - Additional separators increase separation (20% at nearest parasitic crossings upstream of interaction points)
 - Beam-beam effects reduced - performance agrees better with model neglecting beam-beam
Comparing to Model without Beam-Beam Effects

- After shutdown, luminosity evolution for similar stores agrees better to model without beam-beam effects.
- Most pbars lost during HEP are burned in luminosity (good!)
- Protons suffering from head-on beam-beam due to brighter pbars
 - Limited tune space

Before shutdown (Jan. 6, 06) After shutdown (July. 27, 06)

V. Lebedev
Tevatron Plan

- Implement 2nd order chromaticity correction @ low β
 - Installed and being commissioned
 - Will allow pursuit of a new working point

- Pursue other minor improvements (few % each)
 - Scrape (higher intensity) protons @ 150 GeV
 - Investigating new cogging between pbar injections
 - Reduce beam-beam effects by changing locations of long-range crossings
 - Use TELs (electron lenses) on protons for beam-beam compensation
 - Raise tunes of individual bunches away from 7/12 resonance to improve lifetime
 - More reliable (bunch-by-bunch) tune measurements
 - Better helices, improved transfer line matching, faster shot-setups, etc.
Antiproton Improvements

- Antiprotons delivered to Tevatron increased by 45%
 - Accumulator stacktail gain correction - 12%
 - Fast Accumulator-to-Recycler transfers - 10%
 - Recycler to Tevatron transfer efficiency - 6%
 - Misc. (reliability, etc.) - 11%

- Other factors
 - Lithium lens -- increasing gradient
 - Focus more pbars into AP2 line leading to Debuncher/Accumulator
 - Developed Model to understand stacktail -- good match to data (Lebedev)
 - Stacktail cooling in Accumulator identified as major bottleneck
 - New Recycler working point
 - Reduce impact of space charge tune shift; smaller emittances
 - Pbar bunch intensity leveling in Recycler
 - Uses RF feed-forward system to reduce bunch-to-bunch variations
 - Helpful for Tevatron and experiments' trigger/DAQ systems
Antiproton Stacking Improvements

- **Major items**
 - New Stacktail Gain Equalizers
 - First installed in March
 - Second installed on past Monday
 - New Accumulator Lattice
 - Installed in May

- **Other Items**
 - Implementation of leg 3 stochastic cooling-- done
 - Improve Debuncher cooling-- in progress
 - Improve Debuncher and Accumulator orbits and matching optics-- in progress

- **Misc**
 - Re-install new style lithium lens with higher gradient
 - Improves flux into Debuncher
 - Two recent failures
Run II Weekly Antiproton Accumulation

New Accumulator Lattice

June 06
Reducing Time for Pbar Transfers to Recycler

average prior to 2006 shutdown ≈ 68 min
Best Stacking Hour in a Day

Reduced Stacking due to:
• Accumulator Lattice Change
• Lithium Lens failures
Present Collider Plan

- Increase pbar stacking rate
 - Change Accumulator Lattice to optimize stacktail-- done
 - Install second new equalizer for stacktail gain-- done
 - Tune stacking with improvements
 - Put new style lithium lens back in asap

- Slowly increase stash size in the Recycler

- Implement 2nd order chromaticity correction in Tevatron to improve lifetimes (New sextupole circuits)

- Optimize peak vs. integrated luminosity with experiments
 - Approaching design 320 pb-1/s peak luminosity

- Continue to work on reliability in all machines

- Investigate new strategies
Parameters for Projections

- Number of protons per bunch
- Luminosity Density @ 100 x 10^{10}
- Luminosity Density @ 300 x 10^{10}
- Init Tevatron Lifetime @ 80 \mu b^{-1}/sec
- Init Tevatron Lifetime @ 160 \mu b^{-1}/sec
- HEP store hours per week
- Acc-Rec Transfer Efficiency @ 0x10^{10}
- Acc-Rec Transfer Efficiency @ 300x10^{10}
- Acc-Rec transfer time
- Recycler mining efficiency
- Recycler lifetime
- Initial Stacking Rate

- Half rate stack size
- Maximum stack size
- Timeline Utilization Factor
- Accumulator leftover factor

The output (initial, integrated lum.) depends on the average store length and the number of antiproton transfer shots between stores.
Projected Luminosity from Model

Four Scenarios Modeled

- Scenario IV
- Scenario III
- Scenario II
- Scenario I

Actual Luminosity Plotted up to end of FY06

FY06 start

FY07 start

FY08 start

9/30/03 9/30/04 9/30/05 9/30/06 9/30/07 9/30/08 9/30/09
Maximizing Investments

Strategy Group

- **Charge**
 - Maximize final integrated luminosity delivered to experiments
 - Investigate ongoing improvements to determine payoff
 - Explore new strategies with potential to increase luminosity
 - Continue the Development and use of models to make cost/benefit determinations
Neutrino Program

- **MiniBooNE**
 - Booster improvements during shutdown allowing higher throughput - exceeding design proton delivery rate
 - Resumed run after 14 week shutdown for absorber repairs

- **NuMI**
 - FY07 already best year: >1.2 E20 POT delivered
 - Improvements in slip-stacking
 - 2+5 mode operational
 - 180-200 kW beam power with pbar production
 - 250-300 kW running NuMI-only
 - 2+9 mode being developed for FY08 running
 - Single pulse record > 4 E13
 - Want to push pbar production cycle 2.4 - 2.2 sec
 - Already @ 2.2 sec during pbar shots to Recycler
Protons Delivered to NuMI

> 1.8×10^{20} POT since June 2006
FY07 NuMI Delivered Protons

Integrated Protons (1e18)

TeV cryo problem in F-sector

NuMI magnet H_2O leak

close to design delivery rate despite longer cycle time (2.4 vs. 2.2 sec)
Slipping Stacking

- The Main Injector has six usable “slots”, into which Booster batches may be placed.

- More batches may be loaded, using “slip stacking”, in which an initial batch in the Main Injector is accelerated such that a subsequent batch will be at a slightly different energy.

- The two will then drift together and can be captured as a single batch (with at least twice the longitudinal emittance).
Slip Stacking in the Main Injector

- Space for 6 Booster batches + 1 empty slot
 \[\overline{p} \; N \; N \; N \; N \; N \; N \]
 \((1+5) \)

- Slip stacking allows (present operating scenario)
 \[\overline{p} \; \overline{p} \; \overline{p} \; N \; N \; N \; N \; N \]
 \((2+5) \)

- Recent Successes in slip stacking lead to this possibility
 \[\overline{p} \; \overline{p} \; \overline{p} \; N \; N \; N \; N \; N \; N \]
 \((2+9) \)
NuMI Plan

- Slip Stacking Success has position us to implement (2+9) batch operation for NuMI
 - Presently running (2+5) mode
 - Conduct Studies on (2+9)-- In progress
 - Install collimators in Main Injector-- summer shutdown
 - Commission (2+9) batch operation after shutdown (up to 400KW)
 - Complete Proton Plan and Accelerator NuMI Upgrades (ANU)
Staged Neutrino Program

Proton Plan
- MI RF improvements and operational loading initiatives increase NuMI intensity to $4 - 5 \times 10^{13}$ protons per 2.2 second cycle ($\approx 3 \times 10^{20}$ protons/yr)
- Ultimately 320 kW to NuMI (400 kW when not running pbar source)
- Runs through end of collider program

ANU ("Accelerator NuMI Upgrades", combined with NOvA as per DOE)
- Use Recycler as pre-loader to save time injecting into MI
- ≈ 700 kW to NOvA
- Presently being formalized and baselined

Future Possibilities
- SNUMI (formerly "SNUMI II")
 - Momentum-stack protons in Accumulator _ boxcar stacking in Recycler
 - Ultimately ≈ 1.2 MW to NuMI
 - Still in early conceptual stage

- HINS (formerly "Proton Driver")
 - New 8 GeV proton linac to Main Injector, exploit synergy with ILC
 - ≥ 2 MW to NuMI
 - Not part of our official planning at this point

2007 Users Mtg. - R. Dixon
Summary

- Significant Run II progress in the past year
 - Stacking Rate improvements continue
 - Developing Strategy to maximize integrated Luminosity
- NuMI and MiniBooNE have run well over the past year
- Improvements will continue for the neutrino beam
 - Slip stacking for (2+9) scenario
 - Completion of Proton Plan
 - Execution of ANU
 - Possible future upgrades