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Abstract
We developed a new algorithm of eccentricity tuning calculations of the multi-cell cavity for ILC Cavity Tuning Machine (CTM). This algorithm, as opposed to the old one, considers the acceptable tolerance range for positioning of the cell’s centers and end flanges of the cavity. In most cases, that allows to decrease the number of deformations of the cells and minimize deformation range in comparison with the old algorithm. Thus it allows reducing the time necessary for tuning of the cavity and improving preservation of cells design shape. This algorithm is implemented into C-code and built-in as DLL in the existing CTM control LabVIEW program.

1. Introduction
The cavity tuning machine is a device built to automatically tune ILC 9-cell cavities for operation. The machine can measure and adjust three main cavity parameters such as:
· π-mode frequency
· π-mode electric field profile 
· Eccentricity of the cells.
This note is focused on the eccentricity model that is included in the machine, that has been upgraded recently by a summer intern A. Kononov (supervised by T. Khabiboulline) and tested by P. Berrutti. An ideal cavity has all the 9 cell centers lying on a line which correspond to the z axis, dealing with a real cavity one should take into account the position of the cell centers and get a best fit line that describes the electrical axis of the structure. The eccentricity can be calculated for each cell and it represents the deviation of the cell center from the best fit line. In order to align the cavities in the cryostat it is necessary to know where the electric axis of each one is. Moreover it is required to reduce the maximum value of the eccentricity for each cavity: the tolerance value for ILC cavities is ±0.5 mm. A simple scheme representing a cavity like a system of hinges is shown in figure 1. The cavity tuning machine is capable of measuring the deviation of the cell centers from the straight line and to correct it by differential modifications applied by a controlled jaw gate.
[image: C:\Users\berrutti\Desktop\CTM_Artem\Source\HINGES_9CELL.png]
Fig. 1: scheme of a cavity and the laser apparatus
The displacements applied to the cavity are monitored through a laser-mirror-camera system: the laser diode emits light which is reflected by the mirror and captured by the camera, the track of the light spot on the camera sensitive area gives information on the displacement of the cell that is being adjusted by the gate. The reason why the eccentricity model of FNAL tuning machine has been upgraded is the following: the previous model was made to bring the eccentricity maximum value to 0 mm for each cell and, doing so, it suggests excessive cell modifications that have to be reduced by the user. The purpose of this technical note is to explain in details what has been done and how the new eccentricity plugin has been implemented. The function of the hardware equipment of the tuning machine has not been modified and nothing has changed with the measurement of eccentricity, but the way of assessing and calculating the displacements needed by each cell has been improved. The two goals of this new model are: minimization of the number and amplitude of the modifications, needed to bring the cavity eccentricity within the requested radial tolerance (±0.5 mm). 
2. Algorithm
The model has been implemented in C and then integrated in LabVIEW through compiling into dll library. The block diagram in fig. 2 summarizes the operation of the algorithm. The starting point corresponds to the data acquisition from eccentricity measurement of the tuning machine, after that the code begins a loop. Once the data from the machine eccentricity measurements is acquired, it is necessary to find the best fit line for the two transverse planes XZ and YZ. The least squares method is applied independently to XZ and YZ data. Considering the YZ plane one has two vectors  and, which are the cell center position along Z and Y axis respectively. Those need to be interpolated with a line. The sum of squared residuals is given by  and its minimum can be find by derivation with respect to the two fit parameters  and. 
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Fig. 2: summarizing block diagram.
The equations   and  lead to the expressions of fit parameter of the regression line:
, 
where and are the mean values of the vectors.
Then the code calculates each cell deviations from the best fit line obtained and compares them with the tolerance. If all the cells satisfy this criteria the loop is broken and the algorithm stops, suggesting no to bend the cavity at all. If the cavity does not satisfy the required eccentricity tolerance the program keeps going to the next step, which consists in finding how the bend of each cell influences the sum. The aim is to find the cell which gives the maximum squared residuals decrease. Considering small angles of bend,and, the variation ofdue to the bend of the i-th cell is expressed by:

which is quadratic in, the bend angle variation. The previous expression has a maximum for

The bending angles cannot exceed 1 degree: ; this was set as a limitation because the modifications to the cavity shape should be as small as possible, to perturb as less as possible the cavity electromagnetic performances. If the bend angle is within this limit the software goes to the next step, if not the bend angle is recalculated using the maximum admissible value:

In order to minimize the number of cells bent and the amplitude of the bend, the algorithm finds the bend of which cell gives the maximum decrease of the sum of the squared residuals. Once found the best cell to bend the script changes the bend angle  and the cell centers coordinates according to



At this point the main loop in the program is done, it keeps running until either all the cell deviations are within tolerance, or the loop has run for more than 200 iterations. If the loop ends without success an error flag is returned, if the eccentricity has been corrected the laser shifts are calculated and given as input for the tuning machine LabVIEW program. Laser displacements related to the i-th cell in X and Y directions are given by:


[bookmark: _GoBack]where   is the distance, along z axis, between the first and the last cavity flange. If the tested cavity has a very bad geometry the new eccentricity algorithm may fail and the old one, less sophisticated, can be used to calculate the laser displacements on either XZ or YZ plane. It might happen that the deviations of the cells from the ideal profile are so large that it is impossible to correct the cavity eccentricity, using either one of the models; in this case the operator should save the data and quit the tuning process. A flag has been introduced into the code in order to keep the operator informed of which model has been used to calculate the correction to the eccentricity, and if the eccentricity has been corrected properly. The flag variable can assume five different values which have different meanings to the user. A value equal to zero means XZ and YZ planes were successfully calculated with the new model, one appears when YZ plane was calculated with the new model while XZ was calculated by the old one, flag is equal to two when XZ was corrected by the new model and YZ by the old one, a value of three is shown when the old model was used in both planes and, when the cavity cannot be corrected using of the any models the user gets a numeric output of four. Table 1 summarizes all the possible situations and their results.


	Model XZ plane
	Model YZ plane
	Output flag

	New
	New
	0

	Old
	New
	1

	New
	Old
	2

	Old
	Old
	3

	New
	FAIL
	4

	Old
	FAIL
	4

	FAIL
	New
	4

	FAIL
	Old
	4


Table 1: flag values.

In the case of failure of the eccentricity plugin the suggested laser displacements on XZ and YZ planes are set to 1000 mm, to emphasize the error to the operator. If the cavity measured satisfies the requirements of eccentricity without being modified, the code suggests zero deviations on XZ and YZ planes, and the flag value is equal to zero. The flag value can be found under the panel Tuning in the tab Alignment, the location of this value is highlighted the screenshot presented in fig. 3.
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Fig. 3: Model flag indicator in Cavity tuning machine GUI.
3. Algorithm test
The new eccentricity algorithm has been integrated in LabVIEW and it has been tested on the cavity tuning machine in the RF lab. Several cavities have been tested on the machine and the data was available on the computer. 9 cell cavities from different series have different eccentricity profile going from cavities that do not need any adjustment to cavities that cannot be brought into the required eccentricity range. The results obtained from the new plug in were consistent with what was expected, figure 3 shows the results of cavity TB9NR006 which has a pretty bad XZ profile that could not be corrected by the new algorithm, the numerical value of the flag is set to 1 as expected. Figure 4 shows the output for cavity TB9AES001 which has been tested and tuned many times. One would expect this cavity to be extremely out of tolerance at the point that it is not possible to make it go back into the specs: the output is, as expected, flag equal to 4 and 1000 mm suggested laser deviations.
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Figure4: TB9AES001 output.
To test the reliability of the algorithm cavity TB9NR007, figure 5 shows its eccentricity, was measured several times, and the output of the new eccentricity plugin has been compared with the one gotten from the old model.  It turns out that the old model suggests larger deviations for each cell and, both their average and their standard deviations are bigger than the one obtained from the new model. 

Figure 5: TB9NR007 eccentricity.
The whole data analysis has been carried out on a spreadsheet; results are summarized in table 2 and 3. The initial goals of this new algorithm were the minimization of both the number of bends and the bend amplitudes to bring the cavity eccentricity within the tolerance, looking at the tables below it is clear that the goals are achieved:
· the average amplitude of the cell bends suggested from the old model is always higher than the one obtained with the new model
· cells having a suggested bend of zero do not need to be adjusted
· according to the old eccentricity plug in all the cells have to be bent while the new algorithm brings the cavity within the tolerance modifying just four out of nine.
Moreover the data output from the old model shows a larger standard deviation than the new one, which means that the latest algorithm produces a more stable output for different eccentricity measurements of the same cavity.

	Cell
	STD X
	STD Y
	AVG X
	AVG Y

	1
	0.47416
	0.633889
	-10.0811
	-11.0862

	2
	0.702506
	1.1668
	8.143459
	5.03604

	3
	0.453935
	0.58367
	0.59457
	-12.4899

	4
	0.116038
	0.141092
	7.409404
	12.55387

	5
	0.019035
	0.1026
	-7.71255
	3.395953

	6
	0.06035
	0.036159
	8.663475
	-9.51442

	7
	0.153002
	0.054396
	-19.9495
	14.20375

	8
	0.174271
	0.098142
	7.109014
	5.852303

	9
	0.10363
	0.209119
	-3.94519
	-12.0901


Table 2: old model standard deviations and averages.

	Cell
	STD X
	STD Y
	AVG X
	AVG Y

	1
	0
	0
	0
	0

	2
	0
	0
	0
	0

	3
	0
	0
	0
	0

	4
	0.088273
	0
	1.795448
	0

	5
	0
	0
	0
	0

	6
	0
	0
	0
	0

	7
	0.108763
	0.019155
	-3.57519
	3.120672

	8
	0.012997
	0.02613
	-1.81037
	5.254408

	9
	0.038001
	0
	-6.44851
	0


Table 3: new model standard deviations and averages.

4. Conclusions
After successfully integrating and testing the new eccentricity plugin it will be used from now on whenever a cavity will be measured on the tuning machine. Efficiency and reliability have been proved by the test, failure cases have been considered as well. The measurements of cavity TB9NR007 shown that the goals have been fully achieved (minimization of the number and the amplitude of bends required). Using the new model of eccentricity brings two main advantages:
· It preserves the cell design shape which delivers optimal RF performance, due to the minimization of each cell deviation amplitude
· It keeps the time of the whole tuning operation lower than before, because of the minimization of the number of cells modified.
 In the worst case, which implies the failure of the model, the old algorithm operates and the user is notified of that by the flag variable introduced. For extremely poor cavities even the old algorithm might fail, and again the operator is notified by the flag value and the huge laser displacements suggested.

5. Source code
// CTM1.cpp : Defines the exported functions for the DLL application.
//

#include "stdafx.h"
#include <math.h>
#include <stdio.h>
#define N_cells 11 		//Number of cells + 2 rings
#define tol_range 0.3536	//Tollerance range in plain. =(Tollerance range)/Sqrt(2)
#define max_bend 0.01745	//Pi/180

double X[N_cells], Y[N_cells], Z[N_cells], bend_X[N_cells], bend_Y[N_cells];
double dev_X[N_cells], dev_Y[N_cells], delta_dev[N_cells], mean_Z, mean_Z_sq;
double d_phi[N_cells], numerator, denominator;
struct line {
    double a;
    double b;
};				//Such structures are used to store lines defined by the equation y=a+b*x



struct line X_fit, Y_fit;


/* This function takes a pointer to array and retuns the number of maximal element.
*/
int find_max(double *mas){
    int max_number=1;
    int i;
    for(i=1;i<N_cells-1; i++){
		if(*(mas+i)>=*(mas+max_number)) max_number=i;
    }
    printf("%lf\n", *(mas+max_number));
    return max_number;
}


/******************* Checking deviations **********************************/
/* This function takes pointer to array, which contains deviations from fitting line.
The function check if all the deviations are less then tolerance range, if so it returns 1, else it returns 0.
*/
short fit_check(double *dev_v){
    int i;
    short j=1;
    for(i=0; i<N_cells; i++){
		if(fabs(*(dev_v+i))>=tol_range){
			j=0;
			break;
		}
    }
    return j;
}

void forced_bend(double *dep_v, double *bends){
	int i,k;
	for(i=1; i<N_cells-1; i++){											
		for(k=i; k<N_cells; k++){			
				*(dep_v+k)-=(*(bends+i))*(Z[k]-Z[i]);					//Returns cells' centers to their initial positions
		}
		*(bends+i)=0;
	}
	for(i=1; i<N_cells-1; i++){
		*(bends+i)=(*(dep_v+i)-(*(dep_v+i-1)))/(Z[i]-Z[i-1])+(*(dep_v+i)-(*(dep_v+i+1)))/(Z[i+1]-Z[i]);			//Tries to make angle at the i-th cell's center equal to 180 grad
		if(fabs(*(bends+i))>max_bend){
			*(bends+i)=(*(bends+i))/fabs(*(bends+i))*max_bend;
		}
	}
	for(i=1; i<N_cells-1; i++){
		for(k=i; k<N_cells; k++){			
				*(dep_v+k)+=(*(bends+i))*(Z[k]-Z[i]);    
		}
	}
}


/******************* Least Square Method **********************************/
/*This function takes pointers to 2 arrays.
One array contains X or Y coordinates of cells, and second is the massive for cells centers deviation from fitting line.
The function returns a structure with type line, which contains fitting line coefficients.
*/
struct line LSM(double *dep_v, double *dev_v){
    struct line fit;
    int i;
	double mean_v, mean_v_sq, mean_comb;
    mean_v= mean_v_sq= mean_comb=0;
    for(i=0; i<N_cells; i++){
		mean_v+= *(dep_v+i);
		mean_v_sq+= *(dep_v+i)*(*(dep_v+i));
		mean_comb+= *(dep_v+i)*Z[i];
    }
    mean_v= mean_v/N_cells;
    mean_v_sq= mean_v_sq/N_cells;
    mean_comb= mean_comb/N_cells;
    fit.a = (mean_v*mean_Z_sq - mean_comb*mean_Z)/(mean_Z_sq-mean_Z*mean_Z);
    fit.b = (mean_comb - mean_v*mean_Z)/(mean_Z_sq-mean_Z*mean_Z);
    for(i=0; i < N_cells; i++){
		*(dev_v+i)=*(dep_v+i)-fit.a-fit.b*Z[i];
    }
    return fit;
}


/*This is a function, which can be called from the LabVIEW.
Function takes pointers to array with X coordinates and its size, to array with Y coordinates and its size, with Z coordinates and size,
and two pointers to arrays for laser shift in both directions ad their sizes.
Functions tries to calculate bendings needed to bring cell centers into the tolerance range.
If it succeeds within 200 iterations, it returns 0 and write laser shifts to arrays, otherwise it returns 1. 
*/
extern "C" {
	int __declspec (dllexport) tuning(double *X_in, int X_size, double *Y_in, int Y_size, double *Z_in, int Z_size, double *ShiftX_in, int ShiftX_size, double *ShiftY_in, int ShiftY_size){
		
		int i, k;

		mean_Z=mean_Z_sq=numerator=denominator=0;
		for(i=0; i<N_cells; i++){
			bend_X[i]=bend_Y[i]=dev_X[i]=dev_Y[i]=delta_dev[i]=d_phi[i]=0;
		}

		for(i=0; i<N_cells; i++){
			X[i]=X_in[i];
			Y[i]=Y_in[i];
			Z[i]=Z_in[i];
			mean_Z+=Z[i];
			mean_Z_sq+=Z[i]*Z[i];
		}
		mean_Z=mean_Z/N_cells;
		mean_Z_sq=mean_Z_sq/N_cells;


	   
    
		int counter_X =0;
		int counter_Y = 0;     //This variables is used for iterations count.
		int result = 0;
		/* This loop calculates bendings in XZ-plane
		*/ 
		while(1){
			counter_X++;
			X_fit = LSM(X, dev_X);						//Fitting with Least Square Method
			if(fit_check(dev_X)==1) break;				//Checking if centers of cells are in the tolrance range
			for(i=1; i<N_cells-1; i++){					//This part calculates best bend angle for each cell in assumption that all angles are small.
				delta_dev[i]=0;							//It uses first oder aproximation: sin(x)=x, cos(x)=1. 
				numerator=denominator=0;				//In this case change in summ of squares of deviations is the quadratic function of bend angle, and we can find its maximum. 
				for(k=i; k<N_cells; k++){
					numerator+=(Z[k]-Z[i])*dev_X[k];
					denominator+=(Z[k]-Z[i])*(Z[k]-Z[i]);
				}
				d_phi[i]=-numerator/denominator;
				if(fabs(d_phi[i]+bend_X[i])<=max_bend){					//This condition checks if the bending exceeds the maximum bend angle.
					delta_dev[i]=numerator*numerator/denominator;		//If not me bend cell on the angle, which maximize the change of the deviation.
				} else {												//If yes bending angle is chosen to bring the bend to maximal allowed value. 
					d_phi[i]=max_bend*d_phi[i]/fabs(d_phi[i])-bend_X[i];
					delta_dev[i]=-2*numerator*d_phi[i]-denominator*d_phi[i]*d_phi[i];
				}
			}
			i=find_max(delta_dev);				//Here we choose, which cells bending gives maximal change in sum of deviations.
			bend_X[i]+=d_phi[i];				//It bends cell.
			for(k=i; k<N_cells; k++){			//It calculates new cells centers coordinates
				X[k]+=(Z[k]-Z[i])*d_phi[i];    
			}
			if(counter_X==100) break;
		}



		/* This loop calculates bendings in YZ-plane. It's the same as the loop for XZ plane. 
		*/ 
		while(1){
			counter_Y++;
			Y_fit = LSM(Y, dev_Y);
			if(fit_check(dev_Y)==1) break;
			for(i=1; i<N_cells-1; i++){
				delta_dev[i]=0;
				numerator=denominator=0;
				for(k=i; k<N_cells; k++){
					numerator+=(Z[k]-Z[i])*dev_Y[k];
					denominator+=(Z[k]-Z[i])*(Z[k]-Z[i]);
				}
				d_phi[i]=-numerator/denominator;
				if(fabs(d_phi[i]+bend_Y[i])<=max_bend){
					delta_dev[i]=numerator*numerator/denominator;
				} else {
					d_phi[i]=max_bend*d_phi[i]/fabs(d_phi[i])-bend_Y[i];
					delta_dev[i]=-2*numerator*d_phi[i]-denominator*d_phi[i]*d_phi[i];
				}
			}
			i=find_max(delta_dev);
			bend_Y[i]+=d_phi[i];
			for(k=i; k<N_cells; k++){
				Y[k]+=(Z[k]-Z[i])*d_phi[i];
			}
		if(counter_Y>=100) break;
		}

		if(counter_X >= 100) {
			forced_bend(X, bend_X);
			LSM(X, dev_X);
			result=1;
			if(fit_check(dev_X)==0) result=4;
		}

		if(counter_Y >= 100) {
			forced_bend(Y, bend_Y);
			LSM(Y, dev_Y);
			if(result==0) result=2;
			if(result==1) result=3;
			if(fit_check(dev_Y)==0) result=4;
		}
/******************* Laser Shift Calculation **********************************/
		for(i=0; i<N_cells-1; i++){
			if(result!=4){
				ShiftX_in[i]=(-Z[N_cells-1]+Z[0])*2*sin(bend_X[i+1]);
				ShiftY_in[i]=(-Z[N_cells-1]+Z[0])*2*sin(bend_Y[i+1]);
			} else {
				ShiftX_in[i]=1000;
				ShiftY_in[i]=1000;
			}
		}
		return result;
	}
}
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