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Modeling Quench Propagation in Inductively Coupled System of Coils: 
Dump Resistors Connected in Parallel to Each Coil in the System 

E. Khabiboulline and I. Terechkine 

I.  Introduction 
In an attempt to improve existing tool for modeling quench protection (QP) of the SS2 

focusing lens of the HINS linac front end [1] and make the QP technique more flexible and 
reliable, a QP case was studied where each coil in a system of inductively coupled coils has a 
dump resistor permanently connected in parallel to the coil. In the previously developed 
approach [2], only two dump resistors were used, which were connected to the main coils or to 
the bucking coils. Although quite adequate for the SS2 lens system, this approach could not be 
applied to an arbitrary system of coils without making significant reservations. Having the same 
system of coils as a polygon for studying the improved (new) approach, we had an opportunity to 
verify results obtained by the new modeling tool by comparing them with what was obtained 
earlier in [2]. The most challenging part in the development of the new tool was to properly 
describe magnetic field on turns of all quenching coils, partly because in this case none of the 
lens coils’ currents coincide with the total circuit current.  

Although the approach described in this note is exemplified by analysis of the SS2 focusing 
lens, and the modeling program is mostly an expansion to previously completed work [2], it is 
valid for other systems, e.g. Mu2e or ITER CS coil system.  

To cover a QP problem in depth, the next effects must be taken into account and embedded 
in the modeling tool: 

- each coil in the system is equipped with its own dump resistor; 
- quenches can happen in any of the coils in the system, initially and/or with some time 

delay; 
- a diode or a combination of a diode and a resistor is used instead of a dump resistor; 
- thermal insulation between the coils can transfer heat from coil to coil; 
- active heaters are included in the system and an option of using the active heaters as 

dumps is provided; 
- inductive heating of metal structure of the coil system and transfer of generated heat to 

the coils.  

At the moment, only the first two features of the list are implemented in the code. 
Implementation of the next three features does not seem too challenging, and can be made if a 
need to include the features becomes obvious. It is more difficult to introduce the last feature in 
the list, although this is also quite feasible. 
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II.  The modeling code  
A modified circuit for modeling QP of the SS2 focusing lens of the HINS linac front end is 

shown in Fig. 1 below.  

 
Fig. 1: Current discharge circuit in the case when quench happens in every coil and each coil is 
equipped with a dump resistor. 
 

For the purpose of easy expansion to a different system of coupled coils, all the coils in the 
scheme are numbered, and functional difference of the coils is not reflected in the scheme. This 
simplifies generation of equations to solve the system. For the purpose of analysis of the SS2 
system,  and to simplify comparison with the case studies in [2], this assumption will not be 
strictly followed though. 

The program is written in MATLAB and consists of several M-Files: an Input File, a Main 
File, an Output File, and several files which describe functions used in the program. 

In the Input File, most of the geometrical parameters and program constants are defined. 
Since the bucking coils and main coils have different properties, two variations of some 
parameters are created: B_X for the bucking coil and M_X for the main coil. For example, the 
inner diameter for the bucking coil is defined as B_Di, while the inner diameter for the main coil 
is M_Di. Some parameters are different for each coil, so they will be named B1_X, B2_X, 
M1_X, or M2_X. For example, the temperature matrix for the first bucking coil is labeled as 
B1_Tturn. Other relevant parameters include the values of the dump resistance, which are 
labeled Rd#, where # is determined by the coil to which the dump resistor is connected 
(numbering begins at the first bucking coil and ends at the last bucking coil, as shown in Fig. 1). 
All parameters can be modified by users.  

Quench event is initialized by assigning a temperature at a point in one of the coils higher 
than the critical temperature; the point (or a set of the points) is chosen prior to the program run. 
By default, this point is at the location of greatest magnetic field, but any other location can be 
used instead. In general, an arbitrary array of quenching points can be chosen, including points in 
several (e.g. all) coils. 



FNAL  TD-11-011  August 22, 2011 

3 
 

In the Main File, all the calculations necessary for modeling are carried out. First, the Input 
File is called and all the commands inside it are completed.  Then, arrays are initialized that will 
be used to store the values of certain variables at evenly-spaced times of quench propagation 
modeling. These arrays provide information about the evolution of variables throughout the 
duration of the quench, and later will be used to generate visual output. Before calculations 
begin, a list of computational properties and user settings are displayed for convenience. Next, a 
"for" loop begins which will run for the duration of quench propagation modeling specified by 
the user. The modeling is based on time steps; the length of the step can be specified in the Input 
File. A smaller time step will result in greater computational time, but will provide more accurate 
results. Parameters found in the Input File determine initial conditions used by the loop. Each 
cycle of the loop uses conditions calculated by the previous cycle.  

In the loop: 
First the magnetic field in each coil is evaluated. Earlier analysis (Appendix, #1) determined 

that calculating the magnetic field using an analytical approach (Appendix, #2) would not be 
accurate, since it would not take into account the flux return made of soft steel. Instead, Comsol 
was used to model the magnetic system with the flux return.  Data was extracted at various ratios 
of currents in the coils to the total current in the circuit. This data can be found in the M-File 
labeled "Magnetic_Field." To calculate the magnetic field in the bucking coil, only the current 
ratio of the bucking coil and the current ratio of the nearest half of the main coil are important. 
For a half of the main coil, the ratios of this half coil, of the nearest bucking coil, and of the other 
half of the main coil are needed. The data computed at various current ratios is compiled into 
multi-dimensional arrays. Interpolation using the current ratios calculated during the time step is 
carried out on these data arrays. The magnetic field data was collected at the 1 A circuit current 
because the dependency of the magnetic field on the circuit current is very close to linear. 
Interpolated data effectively forms a transfer function that must be multiplied by the total current 
in the circuit to find the actual magnetic field in the coil. 

The resistivity of the turns in the coils is then evaluated. A function has been created for this 
purpose (the use of functions provides more flexibility for changes to the magnet system, such as 
the addition and removal of coils or use of a different superconducting material). This function 
takes into account factors such as coil temperature and magnetic field, and is stored in a separate 
M-File ("TurnResFunc"). If the working point in the Temperature - Magnetic Field - Current 
Density space at the location of each turn is inside the region bounded by the critical surfaces, 
the resistivity is set to 0. Otherwise, the resistivity calculated for a normally conducting material 
applies. The resistivity of each turn is used to find the resistance of the quenching coil layers. 
Then, the total resistance developed in the quenching coil is evaluated as the sum of layer 
resistances. 

Next, the current derivatives for the present time step are calculated. A system of equations 
can be set up based on the circuit diagram in Fig. 1. As all parameters of the circuit, namely the 
mutual inductances between the coils, the currents in the coils, the currents in the dump resistors, 
the dump resistances, and the resistances developed in the quenching coils are known, the system 
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of equations can be solved to find the values of all the current derivatives in the present time 
step. A full explanation of this method can be found in (Appendix, #3). 

The voltages in the system can then be found. In each coil, the voltage of each layer relative 
to the innermost layer is calculated as the sum of the voltages of the inner layers. The voltage 
across a dump resistor is equal to the product of the resistance and the current in the resistor. 
Using the circuit diagram in Fig. 1, the voltages to ground in the quenching coil and in any point 
of the circuit can be found. To find the voltage to ground of each layer in a bucking coil, the 
previously calculated layer voltage relative to the innermost layer can be added to the voltage to 
ground in the proper location of the circuit.  

The instantaneous power in a dump resistor is calculated as the square of the current in the 
resistor multiplied by the resistance. The total energy dissipated in the dump resistor can then be 
found as the sum of the previous total of energy dissipation and the energy dissipated in the 
current time step, which is evaluated as the instantaneous power multiplied by the length of the 
time step.  

Since now we know the values of all variables in the current time step, their values can be 
stored in the previously prepared storage arrays. However, they are not stored during each 
iteration of the loop. Instead, the variables are entered into the arrays in an evenly-spaced manner 
so that the total number of points stored is equal to the parameter "Nslice" found in the Input 
File. Modifying the value of "Nslice" will alter the size of the storage arrays, which will 
ultimately determine the resolution of the output graphs (having about 100 data points usually 
provides good resolution). 

Now, the values of variables in the next time step must be computed, starting with the coil 
temperature. If the coil is not quenching, there is no heat generation due to energy dissipation, 
which would cause a temperature increase. A coil's temperature could still rise if some heat 
comes from adjacent, quenching coils through insulation or from active heaters.  If the coil is 
quenching, the temperature change is calculated in a function ("TempFunc") which takes into 
account strand heating due to resistance and heat propagation through conduction. The change in 
temperature for the time step is added to the current coil temperature to find the coil temperature 
for the next time step.  

To find the currents in the coils in the next time step, the change in current (described by 
dIdt*time) is added to the currents in the present time step. The currents in the dump resistors in 
the next time step also must be determined. A system of equations is set up using the circuit 
diagram in Fig. 1. Knowing the values of the coil currents in the next time step and the constant 
dump resistances, the system of equations can be solved to find the currents in the dump resistors 
in the next time step. This method is similar to the technique used earlier in calculating the 
current derivatives, and is described in (Appendix, #3). 

All the needed values for the next time step are now known, so the "for" loop can be carried 
out for the next cycle. The program commands in the loop will be completed for each time step 
until the duration of quench propagation modeling specified by the user has been reached. Then, 



FNAL  TD-11-011  August 22, 2011 

5 
 

several ending commands may be called, such as a call to the Output File so that data is 
displayed.  

The Output File contains commands which will visualize an assortment of data. For example, 
graphs of currents vs. time, voltages vs. time, instantaneous temperature in coil, etc. may be 
called. These commands may be adjusted so that related data (e.g. in other coils) is displayed. 
The Output File is provided for convenience, and any additional commands may be added to the 
file or called directly in Matlab after the program has finished running.  

A block diagram of the program is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Block diagram of the quench propagation code 
 

III. Verification of the code 
To verify the accuracy of the program, the results can be compared to the previously 

completed work [2], which did not use a general approach to quench protection. A lack of dump 
resistors connected to halves of the main or to the bucking coils can be simulated by assigning a 
high value to the corresponding dump resistors (e.g. 100 Ohms). Because of the high resistance, 
a minute amount of current will flow through the dump resistor so it will be almost ineffective in 
dissipating energy. The following program parameters were used: the starting current I0 = 249 A, 
the values of dump resistors: Rd1 = 100 Ohm, Rd2 = 1.3 Ohm, Rd3 = 1.3 Ohm, Rd4 = 100 Ohm, 
the step size stepT = 10-4 s, the length of the output array, NSlice = 100. Figures 3 to 9 compare 
results obtained in [2] with the results calculated using the general approach for the BC-MC case 
(quench in a bucking coil and dump resistors connected in parallel around the main coils). 
Similarly, Figures 10 to16 compare the results for the MC-MC case (quench in a main coil and 
dump resistors connected in parallel around the main coils). Table 1 provides a summary of the 
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results obtained by both codes for the BC-MC case, while Table 2 contains a summary of the 
MC-MC case. 

 
BC-MC: Quench In Bucking Coil. Dump Resistors around Main Coils 

 

 

a)     b) 
Fig. 3. Currents in the circuit:  a) old method; b) new method 

 

 

a)     b) 
Fig. 4. Voltages to ground in the circuit: a) old method; b) new method 

 

 

a)        b) 
Fig. 5. Energy dissipation in the dump resistors: a) old method; b) new method 
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a)        b) 
Fig. 6. Instantaneous power in the dump resistors: a) old method; b) new method 

 

 

a)        b) 
Fig. 7. Temperature distribution in quenching coil, at 1 sec: a) old method; b) new method 

 

 

a)        b) 
Fig. 8. Maximum temperature in the quenching coil: a) old method; b) new method 
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a)        b) 
Fig. 9. Voltage in the layers of the quenching coil relative to the inner layer: a) old method; b) 
new method 

Table 1. Comparison of the results of the two methods for the BC-MC Case 
Method Max. Coil 

Resistance 
(Ohm) 

Max. Coil 
Temperature 

(K) 

Max. 
Voltage to 

Ground 
(V) 

Max. 
Voltage 

across Coil 
(V) 

Max. 
Power in 
Dump 2 

(kW) 

Max. 
Power in 
Dump 3 
 (kW) 

Energy 
Dissipation 
in Dump 2 

 (kJ) 

Energy 
Dissipation 
in Dump 3 

 (kJ) 

Energy 
Dissipation 

in Coil 
(kJ) 

Old 6.32 194 163 318 19.0 19.0 3.15 3.15 4.70 

New 6.69 204 170 321 19.4 19.4 3.15 3.15 4.45 

 

 

MC-MC: Quench In Main Coil. Dump Resistors around Main Coils 
 

 

a)        b) 
Fig. 10. Currents in the circuit: a) old method; b) new method. 
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a)        b) 
Fig. 11. Voltages to ground in the circuit: a) old method; b) new method 

 

 

a)        b) 
Fig. 12. Energy dissipation in the dump resistors: a) old method; b) new method 

 

 

a)        b) 
Fig. 13. Instantaneous power in the dump resistors: a) old method; b) new method 
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a)        b) 
Fig. 14. Temperature distribution in quenching coil, at 2 sec.: a) old method; b) new method 

 

 

a)        b) 
Fig. 15. Maximum temperature in the quenching coil: a) old method; b) new method 

 

 

a)        b) 
Fig. 16. Voltage in the layers of the quenching coil relative to the inner layer: a) old method; b) 
new method 
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Table 2. Comparison of the results of the two methods for the MC-MC Case. 

Method Max. Coil 
Resistance 

(Ohm) 

Max. Coil 
Temperature 

(K) 

Max. 
Voltage to 

Ground 
(V) 

Max. 
Voltage 

across Coil 
(V) 

Max. 
Power in 
Dump 2 

(kW) 

Max. 
Power in 
Dump 3 
 (kW) 

Energy 
Dissipation 
in Dump 2 

 (kJ) 

Energy 
Dissipation 
in Dump 3 

 (kJ) 

Energy 
Dissipation 

in Coil 
(kJ) 

Old 1.88 99.4 72.5 71.9 4.04 3.71 1.58 1.45 7.98 

New 2.33 78.9 81.7 81.08 5.14 4.71 1.75 1.61 7.56 

  

  
For the BC-MC case, the results of the two programs are almost identical for the following 

categories: currents, voltages, energy dissipation, and instantaneous power. However, the 
distribution of temperature in the quenching coil is somewhat different. Also, the maximum 
temperature and the maximum resistance developed in the quenching coil are slightly higher for 
the new program.  The predictions of the two programs differ by less than five percent. 

For the MC-MC case, all of the variables have somewhat different instantaneous values. 
Results obtained by the two programs differ by a maximum of about twenty-five percent. 
The disparities in the results of the two programs could are due to following reasons. The most 
important one is that the magnetic field calculations for the newer version of the program takes 
into account the ratios of currents in two or three coils, while the older version calculates the 
magnetic field based on ratios of currents in only one or two coils, which results in  different 
magnetic field on turns, turn temperature, and resistance. Besides, the calculations made using 
the general approach use dump resistors with resistances of 100 Ohms, as opposed to the old 
approach with an absence of resistors connected in parallel to some coils.  
 

IV.  Summary 
A new quench protection technique for use with the SS2 focusing lens of the HINS linac was 

made possible by developing a tool for modeling it. The technique employs dump resistors 
permanently connected to each coil in the system. Generalized approach used in the developed 
code allows analysis of more wide class of systems with inductively coupled superconducting 
coils. Comparison of results obtained by using the new code with those obtained previously in 
[2] demonstrates satisfactory accuracy of the QP modeling for the SS2 lens system using the 
“old” protection technique and the “old” modeling tool. More elaborate study of the protection 
system using the new protection technique and the new modeling approach will follow. 
 

References: 
1. M. Tartaglia, et. al., “Solenoid Focusing Lenses for the R&D Proton Linac at Fermilab”, 

PAC-09. 
2. E. Khabiboulline, I Terechkine, “SSR2 Focusing Lens Quench Protection Study”, FNAL TD 

note TD-11-006, April 2011. 
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Appendix, #1: Comsol Modeling of Magnetic Field in Coils 
It may be possible to use an analytical approach to calculate the magnetic field in the coils, 

instead of interpolation of Comsol-generated data which takes into account the iron surrounding 
the coils. This note investigates the influence of the nonlinearity of the magnetic permeability of 
the iron and the presence of the iron on the magnetic field inside the coils. 

The modeling was done with all current ratios set equal to 1, and with the total current equal 
to 1A. The permeability of the iron was set to 100, MUR (a nonlinear function defined for soft 
iron), or 1 (representing no iron). When generating the graph for permeability of 1, the magnetic 
field strength was multiplied by a constant value of 1.06. This multiplication represents the 
possible scaling that could be done in an analytical approach for this system of coils. 

R Position (m) 

 

Relative permeability 

Blue: µ = 100 

Red: µ = MUR(B)   (Soft Iron) 

Green: µ = 1 (multiplied by factor of 1.06) 

20*10-3 
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26.5*10-3 

 

31.05*10-3 
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36.5*10-3 

 

 

42.1*10-3 

 

 

 

The curves representing magnetic permeability of 100 (blue) and MUR (red) are almost the 
same, which means that the nonlinearity of the permeability of the iron is not significant.  

The graphs with magnetic permeability of MUR (red) and 1 (green) are almost equal closer 
to the center of the magnet system (low R values). In the graphs, the main coils are positioned 
along Z at [-0.094, -0.0025] and [0.0025, 0.094]. Observations of these sections indicate that the 
magnetic fields calculated for the main coils appear to be similar for both methods. The bucking 
coils are positioned along Z at [-0.1084, -0.103] and [0.103, 0.1084]. The graphs show that there 
exists a substantial disparity between the magnetic fields calculated using the two methods.  
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Closer to the outside of the coils (high R values), the graphs show more discrepancy. The 
graph with R=42.1e-3 is the worst case, and this figure shows a maximum difference of about 
50% (for the main coil, since the cross section does not include any part of the bucking coil). The 
two versions of the magnetic field in the bucking coils are substantially different for high values 
of R as well as low values.  

Since initial quenching is most likely to happen in the areas where the magnetic field is 
greatest, the inaccuracies caused by using an analytical approach for the main coils are not 
significant. Most of the subsequent quenching after the initial quench is determined by heat 
propagation, partly because the quench current is high at low magnetic fields. Therefore, the 
quench propagation model should not be considerably affected by inaccuracies in the magnetic 
field. For these reasons, calculation of the field in the main coils can either be completed from 
interpolation of Comsol-generated results taking into account the surrounding iron or through an 
analytical approach, which may generate insignificant inaccuracies (Appendix, #2). It may be 
beneficial to compare the two approaches because of potential simplification of the code. 

However, modeling of the magnetic field in the bucking coils cannot be done through an 
analytical approach, because the surrounding iron exerts a strong influence on the magnetic field 
in each bucking coil. Instead, interpolation of Comsol-generated data, taking into account the 
surrounding iron, must be implemented in the program.  
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Appendix, #2: Analytical Modeling of Magnetic Field in Coils 

In modeling quench propagation, it may be necessary to analytically determine the 
distribution of magnetic field in the coils. This note describes one method which makes use of 
the Biot-Savart law. Other methods may exist, such as those which utilize vector potentials. 

To begin, the magnetic field generated by current in a circular loop in the XY plane is 
calculated at point P in the YZ plane (see Fig. 1). 

 

Fig.1 Diagram of circular loop of current and point P in a coordinate plane. 
 

The Biot-Savart law defines ݀ܪ ൌ ூ
ସగ
כ ௗ௟
ሬሬሬሬԦൈ௥̂
|௥|మ

ൌ ூ
ସగ
כ ௗ௟
ሬሬሬሬԦൈோሬԦ
|ோ|య

. In the diagram above, the vector ሬܴԦ 

from point Q to point P can be represented as ሬܴԦ ൌ ௣ݔො൫ݔ െ ௤൯ݔ ൅ ௣ݕො൫ݕ െ ௤൯ݕ ൅ ௣ݖ൫ݖ̂ െ  ߮ ௤൯. Ifݖ
is the angle between the x-axis and the line from the origin to Q, then  

൫ݔ௤, ,௤ݕ ௤൯ݖ ൌ ሺܴ௤ cos߮ , ܴ௤ sin߮ ,  .௤ሻݖ
In our  case, ൫ݔ௣, ,௣ݕ ௣൯ݖ ൌ ሺ0, ܴ௣,   .௣ሻݖ
Then, ሬܴԦ ൌ ො൫െܴ௤ݔ cos߮൯ ൅ ො൫ܴ௣ݕ െ ܴ௤ sin߮൯ ൅ ௣ݖ൫ݖ̂ െ   .௤൯ݖ
Using trigonometry, φ can be eliminated, so 

ሬܴԦ ൌ ොݔ ቌെܴ௤
௫೜

ට௫೜మା௬೜మ
ቍ ൅ ොݕ ቌܴ௣ െ ܴ௤

௬೜

ට௫೜మା௬೜మ
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On the other hand, 
݈݀ሬሬሬԦ ൌ ොݔ כ ௤ݔ݀ ൅ ොݕ כ ௤ݕ݀ ൅ ݖ̂ כ  .௤ݖ݀

Because the loop of current is always located at point 0 on the z-axis with no tilt over the z-
axis, ݀ݖ௤ ൌ 0. Since the loop is a circle, ݔ௤ଶ ൅ ௤ଶݕ ൌ ܴ௤ଶ, so ݔ௤݀ݔ௤ ൅ ௤ݕ௤݀ݕ ൌ 0. Then, 
௤ݕ݀ ൌ െ௫೜

௬೜
 ௤ and substitution givesݔ݀

݈݀ሬሬሬԦ ൌ ௤ݔො݀ݔ െ ොݕ ௫೜
௬೜
௤ݔ݀ ൅ ݖ̂ כ 0. 

The cross-product is now determined: 

݈݀ሬሬሬԦ ൈ ሬܴԦ ൌ ݔ݀ ቈቆെ ௫೜
௬೜
൫ݖ௣ െ ௤൯ቇݖ כ ොݔ െ ൫ݖ௣ െ ௤൯ݖ כ ොݕ ൅ ൬ܴ௣ െ

ோ೜మ

௬೜
൰ כ  .቉ݖ̂

 
Next, the contour integral must be taken. The distance between points Q and P is 
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The overall integral is ܤ ൌ ߤ଴ כ ܪ ൌ ఓబכூ
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The integrals for the three components written above can be split into parts that have limits of 

integration that together comprise integration around the full circle of the source loop: [ܴ௤, 0], 
[0, െܴ௤], [െܴ௤, 0], and [0, ܴ௤]. 

The magnetic field distribution due to the loop of current is azimuthally symmetrical, so in 
this case the field will be evaluated at the point where ݔ௣ ൌ 0 and ݕ௣ ൌ ܴ௣. Furthermore, 

௤ଶݔ ൅ ௤ଶݕ ൌ ܴ௤ଶ, so ݕ௤ ൌ േටܴ௤ଶ െ  ௤, slightlyݕ ௤ଶ. To eliminate the uncertainty in the sign ofݔ

different expressions must be written for the different parts of the contour integral. For example: 
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In the above integrals, ܴ௤ is the radius of the source loop, ݔ௤ represents the position of a 

source current on the loop, ݖ௣ is the distance along the z-axis from the source loop to the point, 
 ௤ is the z-component of the coordinates of the source loop. As mentioned earlier, for this caseݖ
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௤ݖ ൌ 0 since the source loop is centered over the x and y axes with no tilt over the z-axis. ܴ௣ is 
the distance from point P to the z-axis.  

After integration, the magnetic field at point P can be evaluated as: 

 ܤ ൌ  ටܤ௫ଶ ൅ ௬ଶܤ ൅ ௭ଶܤ ൌ ଴ߤ כ ටܪ௫ଶ ൅ ௬ଶܪ ൅  ௭ଶܪ

The equations derived above were tested through a program written in the MATLAB 
language. To analyze the results, ܴ௣ and ܼ௣ could be changed while the other parameters of the 
system remained constant. In generating the graphs below, the following parameters were used: 
ܫ ൌ ௤ܴ ,ܣ 250 ൌ ௤ݖ ,݉ 0.020 ൌ 0. Zp changed in the interval െ0.0915 ൑ ܼ௣ ൑  0.0915, and 
Rp changed in the interval െ0.040 ൑ ܴ௣ ൑  0.040. The figures below compare well with data 
obtained from an equivalent model generated using Comsol MultiPhysics. 
 

Parameters Layout ܤ௫ ܤ௬ ܤ௭ 
ܴ௣ ൌ 0.010 
ܴ௣ ൌ 0.030 

െ0.0915 ൑ ܼ௣ ൑  0.0915 
ܫ ൌ 250  

ܴ௤ ൌ 0.020  
௤ݖ ൌ 0 

 
 
 
 
 
 

 

െ0.040 ൑ ܴ௣ ൑  0.040 
ܼ௣ ൌ 0.020 
ܼ௣ ൌ 0.080 
ܫ ൌ 250  

ܴ௤ ൌ 0.020  
௤ݖ ൌ 0 

 
 
 
 
 
 

   

െ0.040 ൑ ܴ௣ ൑  0.040 
െ0.0915 ൑ ܼ௣ ൑  0.0915 

ܫ ൌ 250  
ܴ௤ ൌ 0.020  
௤ݖ ൌ 0 

 
 
 
 
 
 

   

 
The next step was to expand the single source loop into a solenoid. This was achieved 

through integration along ܴ௤ to form an annulus, and then integration along ܼ௤ to form the 
solenoid. The following expressions involving triple integrals were used: 
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In the integrals, R୧ is the inner radius of the solenoid while R୭ is the outer radius. L is the 

total length of the solenoid. Since the expressions represent a solenoid instead of a loop of 
current, I (current) is replaced with J (current density), which equals ሺN౪כNౢሻכI

LכሺR౥ିR౟ሻ
, where N୲ is the 

number of turns in the solenoid and N୪ is the number of layers. 
The limits of integration of the innermost integral depend on the value of the variable 

integrated in the second integral. MATLAB's standard integration feature does not ordinarily 
allow this situation. One possible workaround is to set the innermost limits of integration equal 
to the extreme values specified by the second integral (in this case, R୯ in the innermost limits of 
integration would be replaced with R୭). Then, a MATLAB function could use a logic operation 
to define the integrand equal to the above expressions when x୯ ൑  R୯. When x୯ ൐  R୯, the 
integrand is set to 0. This way, changing the innermost limits of integration to R୭ provides the 
proper results, since adding 0's does not change the calculated answer and values of x୯ greater 
than R୯ are effectively ignored. Essentially, the integrand equals zero outside of the desired 
region of integration and therefore does not contribute to the integral. Although this method 
provides a suitable workaround, it lengthens computational time. MATLAB's Symbolic Toolbox 
has functions that could achieve the desired result without a workaround. 

In order to further verify the equations and the accompanying MATLAB program, 
calculations were done to find the magnetic field produced by several different geometrical 
structures: loop, annulus, thin solenoid, and full solenoid. The results were then compared to data 
collected from equivalent models created in Comsol MultiPhysics. The figures below represent 
the magnetic field found at points throughout a line inside the solenoid, at R୮ ൌ 0.010 and Z୮ 
ranging from -0.0915 to 0.0915. 
 
Program Structure Parameters Layout ܤ௬, ܤ௭, ܤ 
MATLAB Loop ܴ௣ ൌ 0.010 

െ0.0915 ൑ ܼ௣ ൑  0.0915 

௤ݖ ൌ 0 

ܫ ൌ 250  
ܴ௤ ൌ 0.020  

 

 

Comsol Loop ܴ௣ ൌ 0.010 
െ0.0915 ൑ ܼ௣ ൑  0.0915 

௤ݖ ൌ 0 

ܫ ൌ 250  
ܴ௤ ൌ 0.020  
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Besides the data samples shown in the above figures, the magnetic field data was verified for 

the entire region that experienced significant magnetic field produced by the sample structures. 
Since the results of the MATLAB and Comsol programs compare well, the MATLAB program 
and the accompanying equations seem to be correct. Furthermore, accuracy in the MATLAB 

MATLAB Annulus ܴ௣ ൌ 0.010 
െ0.0915 ൑ ܼ௣ ൑  0.0915 

ܴ௜ ൌ 0.02 
ܴ௢ ൌ 0.0421 

௤ݖ ൌ 0 

ܫ ൌ 250  

 

 

 

Comsol Annulus ܴ௣ ൌ 0.010 
െ0.0915 ൑ ܼ௣ ൑  0.0915 

ܴ௜ ൌ 0.02 
ܴ௢ ൌ 0.0421 

௤ݖ ൌ 0 

ܫ ൌ 250  

 

 
 

MATLAB Thin 
Solenoid 

ܴ௣ ൌ 0.010 
െ0.0915 ൑ ܼ௣ ൑  0.0915 

ܮ ൌ 0.0915 

ܫ ൌ 250  
ܴ௤ ൌ 0.020  

 

 

 

Comsol Thin 
Solenoid 

ܴ௣ ൌ 0.010 
െ0.0915 ൑ ܼ௣ ൑  0.0915 

ܮ ൌ 0.0915 

ܫ ൌ 250  
ܴ௤ ൌ 0.020  

 

 
MATLAB Full 

Solenoid 
ܴ௣ ൌ  0.01 

െ0.0915 ൑ ܼ௣ ൑  0.0915 
ܫ ൌ 250 
ܴ௜ ൌ 0.02 

ܴ௢ ൌ 0.0421 
ܮ ൌ 0.0915 

 
 
 
 
 
  

Comsol Full 
Solenoid 

ܴ௣ ൌ  0.01 
െ0.0915 ൑ ܼ௣ ൑  0.0915 

ܫ ൌ 250 
ܴ௜ ൌ 0.02 

ܴ௢ ൌ 0.0421 
ܮ ൌ 0.0915 
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program could be improved by lowering the tolerance for error of integration, although 
computational time would then increase.  

An analytical approach based on these equations could be implemented in the quench 
propagation program as long as there are no significant external influences (e.g. surrounding 
iron) affecting the magnetic fields produced by the coils. 
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Appendix, #3: Calculating Currents for General Quench Protection Scheme 

One way to analyze the magnet system (with dump resistors connected in parallel to every 
coil) is to come out with an system of circuit equations and solve them having in mind certain 
initial conditions. As before [A1] we will assume that the induction matrix of the circuit is 
known and can be presented as a square matrix:  

{ }

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

44434241
34333231
24232221
14131211

MMMM
MMMM
MMMM
MMMM

M  

We will also use vector of current derivatives: 
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vector of coil currents:  
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vector of dump resistor currents:  
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vector of dump resistor resistances:  
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and vector of coil resistances: 
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Before the initiation of the quench, we know the initial conditions in the system, so we can 
complete {CCur} and {DCur}. Furthermore, the resistances developed in the quenching coils 
can be calculated from the initial conditions, so we know {Rc}. {Rd} is a vector of constant 
values. 

To find the four coil current derivatives in {dIdt},we can use the four equations which relate 
the voltage across dump resistors to the equivalent voltage across the coils: 
 

)4(*)4,4()3(*)3,4()2(*)2,4()1(*)1,4()4(*)4(4
)4(*)4,3()3(*)3,3()2(*)2,3()1(*)1,3()3(*)3(3
)4(*)4,2()3(*)3,2()2(*)2,2()1(*)1,2()2(*)2(2
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++++=
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The above statements can be represented in one equation: Vd = Rc .* CCur + M * dIdt. In 

this statement, “.* “symbolizes the multiplication of corresponding matrix elements, while “*” 
means matrix multiplication.  

This single equation can be rewritten as Vd - Rc .* CCur = M * dIdt, which is represented in 
four equations as:  
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We can solve for the current derivatives {dIdt} by conducting matrix operations with the 

matrix of mutual inductances {M} and a new matrix {U}, which is created based on the 
equations above. Essentially, matrices are used to solve a system of linear equations. 
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UMUMinvdIdt \*)(}{ ==

 
By using relevant equations, we can find a number of other values (such as voltages and 

temperatures) describing the system during the present time step. 
Before the beginning of the next time step, the new values for the currents, {CCur} and 

{DCur}, have to be calculated. To calculate {CCur} in the next time step, we can use an 
equation relating the current to its derivative: 

stepTdIdtCCurCCur nn *}{}{}{ 1 +=+  
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In this equation, {CCur}n+1 describes the currents in the coils in the next time step, {CCur}n 

describes the currents in the coils in the present time step, {dIdt} is the current derivatives in the 
coils in the present time step, and stepT is the length of the program’s time step. 

 
In the initial time step, {DCur} = 0, but we need to find {DCur} for the next step. To begin, 

we set up four equations that contain the unknown values of dump resistor currents in the next 
time step. The first three equations state that the sum of the currents in each partial circuit 
(consisting of dump resistor connected in parallel to coil) must be the same. The fourth equation 
states that the sum of voltage drops across all elements in the total discharge circuit (Fig. 1) is 
equal to zero. 
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These equations can be rewritten as: 
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In the above equations, I1, I2, etc. describe the coil currents in the next time step. Similarly, 
Id1, Id2, etc. describe the dump resistor currents in the next time step. We can set up matrices to 
solve for these dump resistor currents in the system of linear equations. This process is similar to 
the above procedure used to calculate the current derivatives. 
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Knowing both {CCur} and {DCur} in the next time step, we can calculate {Rc} in the next 
iteration of the program loop. Since we now know all the necessary conditions for the next time 
step, we can calculate any other values needed to describe the system. The program can proceed 
to model quench propagation through a series of time steps. 

It should be indicated that there exists an uncertainty in the initial steps of the program 
modeling when {Rd} is too high or the size of the time step is too large. The result is that the 
program terminates because of an error. To ensure that the program functions properly, the 
following condition should roughly be followed: 

210*}{ −≤stepTRd  
In any case, decreasing the step size should result in more accurate modeling.  
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