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Abstract 

 Analytical solutions are derived for transient and steady state gradient distributions in the 

travelling wave accelerating structures with arbitrary variation of parameters over the 

structure length. The results of both the unloaded and beam loaded cases are presented.  
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1. Introduction 

The steady state theory of beam loading in electron linear accelerators was developed 

in 50-th by a number of authors both for constant impedance [1,2,3] and constant gradient 

[4] accelerating structures. They considered equation for energy conservation in a volume 

between any two cross sections: the power gain by the beam or power lost in the walls 

due to Joule effect result in reduction of the power flow. Later on, transient behavior was 

studied following similar approach, but in this case, in addition to the power dissipated in 

the walls and gained by the beam, transient change in the energy stored in the volume 

contributes to the power flow variation along the structure. Again only constant 

impedance [5,6,7] or constant gradient [8,9] accelerating structures were considered.  

On the other hand, traveling wave accelerating structures with arbitrary (neither 

constant impedance nor constant gradient) geometrical variations over the length are 

widely used today in order to optimize the structure and linac performance [10,11].  The 

relationships between structure length, input and average accelerating gradients are 

obtained numerically solving the energy conservation equation. In this paper, generalized 

analytical solutions for the steady state and transient gradient distribution in the traveling 

wave accelerating structure with arbitrary variation of parameters over the structure 

length are presented.  It is based on the method suggested earlier by one of the coauthors 

[12] and is similar to the classical approach [1-9].   

The following definitions are used throughout the paper: 

P  –  Power flow throw  the structure cross section 

W * –  Stored energy per unit of length 

ω  –  Circular frequency 
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Q *  –  Quality factor  

G * –  Loaded accelerating gradient  

G~ *  –  Unloaded accelerating gradient 
I  –  Beam current 

gv *  –  Group velocity 

ρ *  –  Normalized shunt impedance, often called QR , where R  is the shunt 

impedance per unit of length 

z  –  Longitudinal coordinate  

where * denotes that continuous parameters are averaged over the structure period and 

represent the effective values at individual cell. 

The following assumptions are used: a) the structure is perfectly matched at both ends 

and has no internal reflections, b) all dispersion effects that limit field rise time: 

gr vct ω>> , where c  is the speed of light, are neglected, c) time of flight of the beam 

through the structure is much less than the filling time of the structure. 

2. Steady State Regime 

The basic traveling wave structure relations are: 

gWvP =           (2.1) 

ωρ

2GW =           (2.2) 

Energy conservation including wall losses and the interaction with the beam gives: 

GI
Q

W
dz
dP

−−=
ω          (2.3) 

Using Eq. (2.2) in the derivation of the power flow Eq. (2.1) yields: 
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Substituting Eq. (2.4) to Eq. (2.3) and using Eq. (2.2) results in the first order non-

homogeneous differential equation with variable coefficients: 

)()()( zzzG
dz
dG βα −−=         (2.5)  

where 
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1)( , 

gv
Iz

2
)( ωρβ = . The solution of non-

homogeneous differential Eq. (2.5) )(zG can be presented as a product of the solution of 

the homogeneous equation )(~ zG  and a function )(zC : 

)()(~)( zCzGzG ⋅=          (2.6) 

where  

)()(~~
zzG

dz
Gd α−=          (2.7) 

Substitution Eq. (2.6) to Eq. (2.5) and using Eq. (2.7) yields: 

)(~
)()(

zG
z

dz
zdC β

−=          (2.8) 

Integrating Eq. (2.8) gives: 

1
0

'
)'(~
)'()( Cdz

zG
zzC

z

+−= ∫
β ,  

where constant 11 =C (taking into account the initial condition )0(~)0( GG = ) 

Therefore the general solution of Eq. (2.5) is: 









+−= ∫ 1'
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z

dz
zG
zzGzG β        (2.9) 



5 

 

The solution for the homogeneous Eq. (2.7) is: 

∫−
=

z
dzz

eGzG 0
0

')'(
)(~ α

        (2.10) 

where )0(0 GG =  is a gradient at the beginning of accelerating structure and can be found 

from initial conditions : 

)0(
)0( 0

0
gv

P
G

ωρ
=          (2.11) 

where 0P is input RF power. 

The integral of function )(zα can be simplified using analytical solutions: 
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Finally we can rewrite Eq. (2.10) as: 
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Eqs. (2.13) and (2.9) give us expression for the loaded gradient: 
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Table 1: Parameters of the CLIC main linac accelerating structure [10]. 

 First cell Middle cell Last cell 

cvg  [%] 1.65 1.2 0.83 

ρ  [Ω/m] 14587        16220 17954 

Q  5536                 5635 5738 
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The group velocity, normalized shunt impedance and quality factor in the first, middle 

and last cells of the CLIC main linac accelerating structure are summarized in Table 1 

[11]. These parameters have been used to compare accurate solution for arbitrary 

variation of the structure parameters given by Eq. (2.14) and approximate solution given 

in [4] for a structure with constant Q-factor and normalized shunt impedance which are 

taken as for the middle cell but with linear varying group velocity. Both the loaded and 

unloaded gradients are shown in Fig. 1 for input RF power of 63.1 MW which 

corresponds to the average loaded gradient of 100 MV/m. In addition, the unloaded 

gradient has been calculated for 3D model of the structure using Ansoft HFSS [13] 

frequency-domain finite-element code which takes into account internal reflections. 

There is clearly a very good agreement between the accurate analytical solution and the 

numerical simulation. On the contrary, the approximate solution is quite different from 

the accurate solution mainly due to significant (~30%) variation of the shunt impedance 

along the structure, see Table 1.  
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Fig. 1 Loaded (red) and unloaded (blue) gradients calculated accurately (solid) and 

approximately (dashed) for CLIC main linac accelerating structure. In blue circles, the 

unloaded gradient calculated numerically is shown. 

 

3.  Transient Regime 

The transient regime can also be derived analytically. The instantaneous energy 

conservation is given by: 

GI
Q

W
dz
dP

t
W

−−−=
∂
∂ ω         (3.1) 

Substituting Eqs. (2.1), (2.2) and (2.4) into Eq. (3.1) yields: 

I
Q
G

dz
dGv

dz
dGv

dz
dvG

t
G g

g
g

2222
ωρωρ

ρ
−−+−−=

∂
∂      (3.2) 

We assume the following initial conditions: 
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tzG
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        (3.3) 

Using Laplace transformation of a function )(tG : { } 0,)()()(ˆ
0

≥== ∫
∞

− tdttGetGLpG pt , 

its differentiation property: )0,(ˆ zGGp
dt
dGL −=







 and taking into account Eqs. (3.3) we 

can write Eq. (3.2) after Laplace transformation: 

I
Q
G

dz
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dz
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dz
dvGGp g

g
g ˆ

22

ˆ

2

ˆˆ

2

ˆˆ ωρωρ
ρ

−−+−−=      (3.4) 

First, we consider unloaded case ( 0=I ). Then Eq. (3.4) becomes homogeneous 

differential equation: 

),(ˆ),(~̂~̂
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dz
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α . The solution of Eq. (3.5) is obtained 

similar to that of the Eq. (2.7) as: 
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   (3.7) 

where )(zg is defined in Eq. (2.13). The time-domain solution of Eq. (3.7) is obtained by 

applying inverse Laplace transformation and its time shifting property: 

{ } )()()(1 τττ −−=−− tHtfepFL p , where )( τ−tH is the Heaviside step function and 

∫=
z

g zv
dzz

0 )'(
')(τ          (3.8)
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is the signal time delay. Thus, the distribution of the unloaded gradient in time-domain 

along the structure is: 

)]([)()]([),(~
0 ztHzgztGtzG ττ −−=        (3.9)

 

or taking into account Eqs. (2.11) and (2.13) it can be expressed as a function of the input 

RF power:  

)]([
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The solution of non-homogeneous Eq. (3.4) is obtained similar to the solution of Eq. (2.5) 

as product of solution of homogeneous equation ),(~̂ pzG  and a function ),(ˆ pzC : 

),(ˆ),(~̂),(ˆ pzCpzGpzG ⋅=         (3.11) 

Then Eq. (3.4) becomes   

),(ˆ),(ˆ),(ˆ~̂ˆˆ
~̂ˆ

pzpzpzGG
dz
CdC

dz
Gd

dz
Gd βα −−=+=      (3.12)

 

where 
gv

Ipz
2

ˆ),(ˆ ωρβ = . 

Substituting Eqs. (3.5) and (3.11) into Eq. (3.12) yields: 

),(ˆˆ~̂ pz
dz
CdG β−=          (3.13)

 

and furthermore using Eqs. (3.7) and (3.8) 

),(ˆˆ)()(),0(~̂ pz
dz
CdzpezgpG βτ −=−        (3.14) 

Solution of Eq. (3.14) can be obtained by integration in the form:
 



10 

 

)(ˆ')'(
)'(

),'(ˆ
),(ˆ),0(~̂

1
0

pCdzzpe
zg

pzpzCpG
z

+−= ∫ τβ      (3.15) 

where ),0(~̂)(ˆ
1 pGpC = (taking into account initial condition ),0(~̂),0(ˆ pGpG = ). Note, 

that 0)( >zg . Finally, the general solution of Eq. (3.4) is derived using Eqs. (3.7, 3.11 
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Thus the time-dependent solution of Eq. (3.1) is obtained by applying inverse Laplace 

transform to Eq. (3.16). Here again the time shifting property has been used:  

'
)'(2
)'(

)'(
)]'()([)]'()([)(

)]([)()]([),(

0

0

dz
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g
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∫
+−+−

−

−−=

   
(3.17)

 

where, )(zτ  is the function of coordinate given by Eq. (3.8). 

The first term on the right hand side of Eq. (3.17) is the solution of the homogeneous 

equation for the unloaded gradient obtained above Eq. (3.9) or Eq. (3.10) in terms of the 

input power. The second term is the so-called beam induced gradient which is the 

difference between the loaded and unloaded gradient distributions.  

The time-dependent solution given by Eq. (3.17) during the transient related to structure 

filling and to beam injection is illustrated in Fig. 2 (a) and (b), respectively, for the CLIC 

main linac accelerating structure with the parameters from the Table 1. In Fig. 3, the 
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corresponding input power and beam current time dependences are shown together with 

the unloaded, loaded and beam voltages defined as: 

 dztzGtV
L

∫=
0

),()( , dztzGtV
L

∫=
0

),(~)(~ , )(~)()( tVtVtVb −=      

respectively, where L  is the structure length. The rise time rt  is 21 ns gvc ω>> , the 

beam time bt  is 156 ns and the beam current 9919 1021072.3106.1 ×⋅×⋅×== −
be feNI  is 

1.2 A [10]. The structure filling time )(Lt f τ=  is 66.7 ns.   
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Fig. 2 The instantaneous unloaded (blue) and loaded (red) gradient distributions along the 

structure at different moments of time during the transient related to structure filling (a) 

and to the beam injection (b). The steady state solutions are shown as well (solid lines). 
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Fig. 3 The time dependence of the input RF power (blue) with the rise time of 21 ns, 

beam current (green) and the corresponding unloaded (black), loaded (red) and beam 

(light blue) voltages are shown. 

 

The change in the loaded voltage right after injection due to the transient beam loading of 

the structure causes energy spread along the beam. One of the possible methods of 

compensation of this transient beam loading effect is presented in the next section. 

 

4.  Compensation of the transient beam loading 

The idea of the transient beam loading compensation is similar to the one used in [14] 

where linear ramp of the input RF amplitude has been applied to compensate the bunch-

to-bunch energy variation to first order. In this paper, exact modification of the input 

power during a feeling time ft  is calculated in order to bring the gradient distribution at 

injection equal to the steady-state loaded gradient solution )(zG . Based on Eq. (3.9) the 

instantaneous gradient distribution at the moment of injection ftt = is: 

)()]([),(~),( 0 zgztGtzGtzG fff τ−==       (4.1)  

At the same time, the steady state beam loaded solution is expressed by (2.14).  Equating 

Eq. (4.1) and Eq. (2.14) the required time dependence for the input gradient )(0 tG  during 

the feeling time is obtained: 

∫−=−
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g
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0
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)'(

)'(
)()()()()]([ ωρτ     (4.2) 
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where )(0 ftG  is the steady-state value of the input gradient after injection. The input 

gradient in Eq. (4.2) indirectly depends on time. Introducing function )(tz  as a solution of 

the following integral equation:
 
 

∫=
L

z g zv
dzzt

)'(
')(           (4.3) 

Eq. (4.2) becomes an explicit function of time: 
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Expression for the input RF power is derived using Eq. (2.11): 
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where )(0 ftP  is the steady-state value of the input RF power after injection. The solution 

of Eq. (4.5) is shown in Fig. 4 (blue) together with the beam current (green) injected 

exactly at the end of the ramp and the corresponding unloaded (black), loaded (red) and 

beam (light blue) voltages. The loaded voltage is flat during the time when the beam is 

present in the structure and the transient related to the beam injection is fully 

compensated, at least in the framework of this analytical model (see introduction for the 

assumptions made). The gradient distribution at different moments of time is presented 

for the compensated case in Fig. 5 (a) and (b) for the structure filling transient and the 

beam injection transient, respectively. 
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Fig. 4 The input RF pulse profile with 21 ns rise time and ramp-up during the feeling 

time for the transient beam loading compensation is shown in blue. Beam current injected 

exactly at the end of the ramp is shown in green. The corresponding unloaded, loaded and 

beam voltages are shown in black, red and light blue, respectively.
 

 

(a) 
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Fig. 5 The instantaneous unloaded gradient distribution along the structure at different 

moments of time during the structure filling is presented in (a). Special correction to the 
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input RF pulse was applied (see Fig.4). In (b), the instantaneous unloaded gradient at 

different time moments after beam injection is shown in blue. Solid lines represent the 

steady state distributions for loaded (red) and unloaded (blue) gradients. Beam injection 

time is 89 ns. 

 

Summary 

Analytical expressions for unloaded and loaded gradient distributions in travelling wave 

structures with arbitrary variation of parameters were derived in steady state and in 

transient. They were applied to the case of the CLIC main linac accelerating structure. 

The obtained analytical solution agrees very well with the numerical solution obtained 

using finite-element code. On the other hand, it differs from the approximate solution 

obtained using expressions derived earlier in [4]. 
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