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Abstract:
An important step in the design of the magnets for the 11 T program is the development of the Nb3Sn cable. In this first stage of cable development, focus has been on providing the best practical recipes to produce any of the cable geometries contemplated by the magnet designers. The first forming step of the rectangular cables to be used to produce keystoned cables 14.7 mm and 15.1 mm wide was finalized out of hard Cu wires of 0.7 mm nominal diameter. The cable optimization process was aimed at achieving both mechanical stability and minimal damage to the delicate internal architecture of the Nb3Sn strands to be used in the magnet short models. The cables that were produced were therefore obtained with mandrels designed accordingly, which determined quite accurately the number of strands required for each cable geometry.


1. INTRODUCTION

The Nb3Sn technology of the wires to be used in the short models of the 11T dipoles is that of the Restacked-Rod Process (RRP) by Oxford Superconducting Technology (OST). This technology has been shown to have a delicate internal structure made of Nb/Sn subelements in a Cu matrix. These subelements are prone to merging together when subject to plastic strain, as for instance during cabling [1-3]. This causes areas of larger effective filament size compared to the nominal values of the round wire. When occurring in a magnet, these local coalesced regions cause magnetic instabilities at low field [4-13]. This merging effect can be reduced by increasing the distance between the Nb/Sn subelements, i.e. in wire designs with larger separation between the subelements the threshold of plastic strain above which such phenomenon occurs is higher [14-16]. The wire that will be used in the 11 T dipole short models has a 50% increase in Cu thickness between the Nb/Sn subelements, which will offer some margin. However, this phenomenon still occurs and must be taken into account in the cable development.
Design and parametric considerations were used so far in the development of mechanically stable cables to be made of Nb3Sn RRP wires. For each cable geometry contemplated by the magnet designers, which included keystoned cables 14.7 mm and 15.1 mm wide, the mandrel was designed in order to provide sufficient room for the strands to wind around it without excessive damage. This requirement, which accompanied the requisites for mechanical stability, allowed determining quite accurately the number of strands needed for each cable geometry. The first forming step of the rectangular cables to be used to produce keystoned cables 14.7 mm (with 40 strands) and 15.1 mm (with 41 strands) wide was finalized out of hard Cu wires of 0.7 mm nominal diameter. The rectangular cables were 1% narrower than the final desired widths of the keystoned cables in order to account for the 1% width expansion to be expected when performing the second, keystoning, cabling step.
2. CABLE DESIGN PARAMETERS

The geometrical relationship between a cable of desired width wC, to be obtained with strands of diameter d, and the required mandrel width wm is shown in the first expression of equation system (1). The second expression in (1) is a simplified formula used for the purpose of parameterizing the number of strands needed for each cable geometry. In (1), N is the number of strands in the cable,  the cable lay (or pitch) angle and  an empirical factor determined by experiment:

						(1)

A large body of data acquired during Nb3Sn conductor development shows that when cabling Nb3Sn RRP wires, it is important that:
  ≥ 1

in order to minimize damage to the internal sub-structure of the strand. For NbTi,  can be < 1, which will produce wider mandrels that allow accommodating a relatively smaller number of strands over wider cable sizes.  
When implementing these formulae to produce keystoned cables with the widths specified by the magnet designers, which are 14.7 mm and 15.1 mm, the plot shown in Fig. 1 is obtained. The values used for wC were 14.55 mm and 14.95 mm respectively to account for the 1% width expansion to be expected when performing the second cabling step of keystoning. As can be seen from Fig. 1, the wider cable is expected to require an additional strand with respect to the narrower cable version. The plot also shows the N dependence with the cable pitch angle.


Fig. 1. Number of 0.7 mm strands required for two different cable widths as a function of pitch angle for Nb3Sn cables ( = 1).
3. CABLE DEVELOPMENT

The rectangular cables were made by Allen Rusy in one pass using a 42-spool compact cabling machine (Fig. 2, left), a forming fixture made of two vertical rolls with variable gap and two thin horizontal rolls (Fig. 2, right), and with mandrels individually designed for each cable geometry [17-20]. The parameters of the cables that were developed and produced, and of the mandrels that were used are shown in Table I. The cables met size tolerances and quality control requirements (no sharp edges, no strand separation, no bunching, etc.). Samples of the cables will be kept in inventory both at FNAL and at CERN.
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Fig. 2. Fermilab’s 42-spool cabling machine with continuous cable pitch regulation (left). Cable forming fixture (right). 

TABLE I  Cable Description
	Cable Traveler Name
	No. strands
	Strand size, mm
	Mandrel width, mm
	Width, 
mm
	Thickness, mm
	Lay angle, 
	PF, %
	SS Core

	R&DT_101007_40_1_0
	40
	0.697
	13.93
	14.55  0.03
	1.302  0.002
	15
	83.4
	N

	R&DT_101026_41_1_0
	41
	“
	14.24
	14.94  0.01 
	1.294  0.002
	15.5
	84.0
	“

	R&DT_101101_40_1_1a
	40
	“
	13.95a
	14.58  0.01
	1.312  0.003
	15.5
	83.8
	Yb

	R&DT_101101_40_1_1b
	40
	“
	13.95a
	14.58  0.02
	1.306  0.005
	17.5
	85.1
	Yb


a Mandrel had 11.3 mm wide slot. 
b Stainless steel core used was 9.525 mm x 25 m in size. 


4. CONCLUSIONS AND NEXT STEPS

A well proven optimization process required to provide mechanical stability, but also minimize damage to the internal architecture of the Nb3Sn RRP strands, was used in the development of the various cables contemplated by the magnet designers for the 11 T dipole short models. 
The next step will be to verify the impact of the cabling process on the actual superconductor that will be used in the magnet short model, by producing a superconducting cable and performing the appropriate electrical and microstructural characterizations.
Next in the cable technology will be that of optimizing the width of the stainless steel core to be used in cored cables [21-24], and of performing the keystoning step as soon as the appropriate tooling is procured.
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