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1) Introduction  
 
 Superconducting (SC) strand characterization is one of the major activities of the 
Short Sample Test Facility (SSTF) at Fermilab. The most important part of the 
characterization process is to measure the strands critical current values. Based on the 
current-voltage characteristics of superconducting strands the critical current value (Ic) 
and the n-value can be determined.  
 This note describes a procedure for analyzing current-voltage data systematically as 
well providing the relevant error analysis for the measurement to obtain error information 
for critical current and n-values. A stand alone program based on MatLab macros has 
been developed that allows performing the analysis automatically. 
 
 
2) Voltage-Current Measurement of SC strands 
 
 The test facility is capable of measuring 75 cm long strand samples at maximum of 
15T (4.2K) perpendicular magnetic field values. A typical short sample measurement of a 
strand is performed under constant magnetic field. While the current is ramped up 
(~20A/sec) the voltage is recorded about every second. In order to record sufficient 
amount of data points, right before the SC reaches its transition region, the current ramp 
rate is reduced to ~1 A/sec. 
 At the transition from superconducting to normal state the voltage measured between 
two voltage taps becomes nonzero. Increasing the current will gradually increases the 
resistance of the strand and consequently the voltage rise will be proportional to 
resistance and to the applied current value. The critical current value (at SSTF) is defined 
as the current value at which the average resistivity of the superconductor strand is 

mc ⋅Ω== −1410ρρ . The quality factor n is calculated using the following power law 
parameterization: 
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Where: 
 

 jc is the critical current density; 
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3) Exponential law  
 
The current-voltage characteristics of type II superconductors can be described by the 
following formula [1]: 
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Where: 
 

 Ef is the electric field at which the superconductor enters into the flux flow 
regime; 

 E0 is the electric field developed in the superconductor at  j = jc; 
 j1 is a constant that describes the current density increase as a function of the 

electric field. 
 
 
 In order to determine Jc and n-value based on the mc ⋅Ω== −1410ρρ  criteria and 
(eq.1) power law parameterization eq.2 has to be re-arranged: 
 

cc jE ⋅= ρ0 ;  )(1 nfj =  
 
From eq. 2 
 

( )
1

0

j
jEj

E
Ee c ⎟

⎠
⎞⎜

⎝
⎛=−     

( )
1

0
j

jEj c

eEE
−

=          
( )

1j
jEj

cc

c

ejE
−

= ρ    eq.3 

 
Differentiating eq.3 in j: 
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From eq. 1 
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Differentiating the above equation in j we obtain: 
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Equalizing eq.4 and 5: 
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Eq.3 can than be written as: 
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The voltage signal during critical current measurement can then be parameterized as:  
 

( )1+⋅
−

⋅⋅⋅=
n

I
II

cc
c

c

eI
A
LV ρ  

 
Where:  
 

 V is the measured voltage (in volts) between the two voltage taps 
 L is the length of the strand between the two voltage taps 
 A is the average area of the strand cross-section 

 
Considering that the voltage measurements can have an offset, the right parameterization 
is the following: 
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4) Linear fit 
 
 Introducing offsetVVz −≡ , where offsetV is the average voltage offset measured by 
fitting a straight line to the voltage signal prior to the transition region, and taking the 
logarithm of eq.8 we can use a linear approach to fit the data: 
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( )zy ln≡   Iaay ⋅+= 10   eq. 9 
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Ix ≡    xaay ⋅+= 10   eq. 12 

 
There is an analytical solution to find a0 and a1 using the least squares method: 
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Minimizing χ2: 
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 For proper evaluation of the coefficients we need to estimate the error of y for each 
data point (σyi.). It is assumed that the measurement error is uniform as a function of 
current so σzi=σz equation is valid for any i. Using this assumption and the error 
propagation method it follows: 
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 Substituting in eq. 13 and 14 σyi. with σz (using eq. 15) one can easily see that 
coefficients a0 and a1 will only depend on the magnitude of zi but they will not depend on 
σz. We can then calculate the parameters and obtain the fitting curve: 
 

xaaez 10 +=   eq. 16 
 
The best estimation of the variance of the data sample is then: 
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where N-m is the number of degrees of freedom and it is equal to the number of 
measurements minus the number of parameters used in the fit. Thus using this technique, 
we can obtain the common error in our measurements of z from the fit although at the 
expense of any information about the quality of the fit [2]. The goodness of the fit using 
the exponential law has been proven by many experiments [1]. 
 Once the parameters of the fit are obtained, the Ic can be calculated by applying 
electrical resistivity of 10-14Ωm and solving the following equation: 
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The n-value can be obtained by solving eq. 11.  
 
 
4.1 Error estimation 
 
 In order to estimate the error of Ic we also have to include in eq. 17 the error of the 
offset: 
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 Since a0, a1, and Voff are correlated proper error propagation calculation is quite 
tedious. We used a different approach. For every VI measurements the following 
procedure is applied to obtain the error: 

1. Fit the data using the method described in section 4. 
2. Calculate the rms value of the data spread using eq.17. 
3. Use smearing technique (randomization based on this rms value) to introduce 

many new data sets by randomizing the curve. 
4. Make fits to every newly created data sets and find a graphical solution for Ic. 
5. The rms values of the spread of Ic and n-values will be representing the errors. 

 Generating 200 data samples were enough to be able to estimate the rms value within 
10% accuracy. 

Examples of this fitting technique used on a 1mm Modified Jelly Roll strand is shown 
in fig. 1-2-3.  
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Fig. 1 

 
 

 
Fig. 2 
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Fig. 3 

 
 

5 Non-linear fit using ‘uifit’ subroutine 
 
 In order to use the linear method for fitting the data we had to take the logarithm of 
the voltages. This transformation only works when the voltage is positive so for the fit we 
are able to use only the last part of the data set. In order to get more accurate results non-
linear fitting technique had to be introduced. This technique is based on minimization 
method. In our program we implemented a freely available subroutine 
(www.mathworks.com/matlabcentral/fileexchange), ‘uifit’, which is capable of 
performing non-linear fitting using the matlab core function ‘fminsearch’. This technique 
allows us to estimate the Ic, the n-value and the associated errors even when we have only 
few data points at the transition region. The error analysis is performed the same way as 
it was described in section 4.1 because this subroutine does not provide the error matrix 
of the parameters [2]. 
 The disadvantage of the non-linear fitting method is that the subroutine needs quite 
accurate initial values to start the minimization process and the computation takes 
significantly longer time to obtain the results. If there is sufficient amount of data points 
at the transition region it is more practical to use the linear method. Fig.4 shows a typical 
data set when the non-linear fit is the more appropriate one to be used.  
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Fig. 4 
 
 
 
6 Non-linear fit using the ‘fit’ subroutine  
 
 In order to reduce the computing time significantly we examined the capabilities of 
Matlab fitting tool box that became available recently. Incorporating the ‘fit’ function in 
to the program we achieved the desired results including the error estimate hundreds 
times faster than using the method described in section 5. In order to calculate the 
parameters errors, the ‘fit’ function uses the ‘error matrix’ so it is not necessary to 
calculate hundreds of time the fitting. 
 The ‘fit’ function allows choosing between different solving algorithms, we used the 
trust region algorithm that represents an improvement over the popular Levenberg-
Marquardt algorithm [2]. 
 We also compared the results and error estimates with those obtained in section 5 and 
we found a reasonable agreement. Fig. 5 shows the results obtained by the new version of 
our program with the same set of data used to get fig. 4. 

The running time of the newly released version of the program is very short, it 
takes about the same amount of time as the linear fit so there were no reasons to keep the 
linear method any more consequently it was removed from the program.  
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Fig. 5 
 
7 Conclusions 
 
 A new data-analysis tool has been developed in order to measure systematically the Ic 
and n-value of SC strands and their errors.  
 This new tool utilizes a non linear fitting method to obtain Ic and n-value as 
parameters of the fit of the current voltage measurements.  
 Matlab software packages were used to develop a stand alone program which allows 
the user performing the data analysis automatically. Initially the user was able to choose 
to analyze data using either a linear or non-linear parameter fit. While the linear method 
was computationally much faster, the non-linear method was more accurate especially 
when only few data points were available at the transition region of the SC.  

Since the running time of the new released version of the program is very short, 
the linear method was removed. 

The program is based on the hypothesis that the uncertainty on the voltage 
measurements is independent from the voltage and current values.  
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