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ction 
s in superconducting filaments release fair amounts of energy that under certain 
 may bring the superconductor to normal state that can be a cause of premature 
in the Fermilab shell and racetrack type magnets [1]. That preliminary analysis 
he strand magnetization measurements did not account for the transport current 

ents and corresponding reduction of the filament magnetization. 

is an attempt to analyze the problem using a different approach, similar to the 
in [2] for calculation of the strand adiabatic stability. The goal was to 

 the strand short sample limit as a function of field, using basic input 
s, like the strand diameter and effective filament size, strand chemical 
ition and specific heat. 

for adiabatic stability calculation 

 description 

lations were based on the critical state model [3], according to which there are 
ossible cases for current flow in a hard superconductor – the current density is 
 or equal to the critical current density Jc at given field and temperature. Filed 
side the superconductor start from its surface.  

nt and field distributions 

inside the superconducting filament carrying transport current and exposed to 
agnetic field Bext is determined by a superposition of the external field, the self 
 the transport current and the field generated by the persistent currents, as 
Figure 1-a). In case of the fully penetrated filament, the whole area is spanned 
bination of the transport and persistent currents with density Jc and non-zero 
field. If the external field is smaller than the penetration field, depending on the 
e transport current there may be a current and field free region in the center of 

nt, as shown in Figure 1-b). 

distribution inside a filament was calculated for current-carrying ellipses with 
origin and opposite current signs for the transport current and with shifted 
d opposite current signs for the persistent current [4]. Figure 2 presents typical 
butions from the transport and persistent currents along horizontal (i.e. normal 
rnal field) axis of the filament and their superposition.  

 magnetic field energy stored in the magnetic field can be found as: 

2
HB
rr

⋅
=ω  or 

2
JA
rr

⋅
=ω . 
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a)  
 

b)  
Figure 1. Combination of the transport and persistent currents inside a filament. Full 

penetration a) and partial penetration b). 

 

 

 

Figure 2. Typical field distribution inside a filament. 
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The former expression was used in [1] to evaluate energy dissipations from measured 
jumps of the strand magnetization. The assumption of constant current density in a 
filament makes it more convenient to use the latter expression, where the vector potential 
in 2D case has only one component yielding the integral of magnetic field over the 
filament axis. 

2.3 Energy depositions due to flux change 

Specifying increment of the temperature rise as ∆T, one can find difference in magnetic 
field distribution inside the filament (Figure 3) and relevant decrement of the energy 
density, corresponding to the energy dissipation in form of heat (Figure 4). At some 
temperature increment, the superconductor enters the normal state that is shown as an 
abrupt change in the energy dissipation. 

Btot Br Tr , Ir , X mm , ( ) 
Btot Br Tr dTr , Ir , X mm , ( ) 

X
0.05 0.03 0.01 0.01 0.03 0.05 1

0.6

0.2

0.2

0.6

1

 
Figure 3. Typical field profile change due to a temperature rise by ∆T. 
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Figure 4. Typical heat dissipations due to a temperature rise by ∆T. 
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2.4 Critical current parameterization 

The critical current density of Nb3Sn was parameterized according to [5] with an 
additional terms responsible for the self-field correction at low fields. Figure 5 shows the 
parameterization before and after correction. 
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Figure 5. Critical current density parameterization. 

2.5. Strand enthalpy 
Specific heat of Nb3Sn composite strand is presented in Figure 6. In order to determine 
how much heat can be absorbed in the strand at a given temperature, the specific heat 
curve should be integrated over the temperature range of interest.  
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Figure 6. Specific heat of the composite Nb3Sn strand. Units on horizontal and vertical 

axes are respectively [mJ/cm3K] and [K].  
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2.6. Adiabatic stability criterion 

Suppose there is an infinitely small amount of heat ∆Q1, deposited in the strand from 
some external source. The strand temperature will rise by ∆T1, according to the enthalpy 
curve. This temperature change will reduce the strand critical current and thus change the 
field profile that will in turn generate heat deposition ∆Q2, which will rise the 
temperature by ∆T2 and so on. This avalanche-like process will continue until either the 
strand temperature reach the critical temperature at a given external field and transport 
current (Figure 7) or the strand enthalpy will exceed the heat deposition (Figure 8). In the 
first case, an infinitely small temperature variation leads to the strand quench, when in the 
second case the strand temperature rise will stop before the quench conditions develop. 
Than the strand adiabatic stability criteria can be defined as a curve, where each point 
corresponds to the case when the stable equilibrium and quench conditions are reached 
together. 

 

Quench

 
Figure 7. Adiabatic instability – quench happens before the stability point is reached. 

 

 
Figure 8. Adiabatic stability point is reached without a quench. 
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The algorithm of finding consequences of a flux jump can be described as follows: 

• B(Bext, T, I, X) - field distribution inside a filament;  
• ∆W(Bext, T, ∆T, I) - energy increment due to a temperature variation;  
• ∆Q(T, ∆T) - strand enthalpy due to a temperature variation;   
• ∆W(Bext, T, ∆T, I) > ∆Q(T, ∆T) - determine if there is an instability; 
• ∆Ts(∆W=∆Q ) - determining the temperature increment of stable equilibrium; 
• ∆W(Bext, T, ∆Ts, I) > ∆Q(T, ∆Ts) - determine if instability causes transition to the    

normal state; 
 

3. Strand critical and quench currents 
The adiabatic stability was analyzed for 1.0-mm and 0.7-mm MJR strands supplied by 
OST. The input parameters used in the calculations are shown in Table 1. The strand 
critical currents calculated in 0-12 T field region are presented in Figure 9 and Figure 10 
along with the load lines of the cosine-theta and racetrack magnets.  

Table 1. MJR strand parameters. 
Parameter Unit 0.7-mm strand 1.0-mm strand 

Strand diameter mm 0.7 1.0 
Effective filament radius mm 0.039 0.055 
Cu to non-Cu ratio  0.85 0.85 
Nb3Sn fraction in the non-Cu  0.64 0.64 
Reference critical current A/mm2 1786 1786 
Reference field T 12 12 
Reference temperature K 4.2 4.2 
Upper critical field T 28 28 
Upper critical temperature  K 18 18 
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Figure 9. Critical current of 1-mm MJR strand. 
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Figure 10. Critical current of 0.7-mm MJR strand. 

The critical current curves have well pronounced minimum at ~0.5 T field due to 
peculiarity of the field distribution inside the filaments. This minimum is 40% lower than 
the nominal quench current (based on the short sample measurements at high fields) of 
the cosine theta magnet that may be the reason of the magnet quenches at 12-14 kA. 
However, in case of the racetrack magnet, the minimum is 46% above the nominal 
quench current that does not explain premature quenches in the short models. 

 

Conclusion 

A model for analysis of adiabatic instabilities in superconducting strands was built and 
tested with two strand types used in Fermilab cosine-theta and racetrack magnets. It was 
found that calculated quench current has a good correlation with the one measured in the 
cosine-theta short models. The model suggests that the reason of premature quenches in 
the racetrack models is not in the strand magnetic instabilities (alone).  

More work needs to be done on verifying the model with the strand measurements and 
analyzing effects of non-uniform transport current distribution within a strand, heat 
transfer and current sharing between adjacent filaments and external cooling by liquid 
helium. 
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