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Abstract—In this note we present a brief 3-D analysis of the peak fields and Lorentz forces for the return end of the first high-field dipole model (HFDA01). The understanding gained from this study would be useful in optimizing the magnet end design for the next dipole models. Also we envision a combined use of ROXIE and BEND to perform both the magnetic and mechanical analysis of the magnet ends at the same time. 

1. Introduction
The 2-D cross-section design for the first high-field dipole model (HFDA01) is reported in [
]. This cross-section was optimized using program ROXIE [
]. The chosen cross-section produces a central field of 12.02 T for an excitation current of 19.6 kA. The iron yoke in [1] was simulated by an area starting at 60mm radius from the center of coil and with a constant magnetic permeability of 1000 (please see Appendix in the end). Fig. 1 and 2 show the 2-D cross-section of the final design along with the numbering system for the blocks and the conductors as adopted in program ROXIE. Fig. 3 presents the magnetic field distribution in the conductors for an excitation current of 19.6 kA. The 2‑D peak fields for each of the conductor blocks are summarized below in Table 1.

Table 1: 2-D peak fields for each of the conductor blocks.
Block No.
Conductor No.
Peak Field (in T)

for I = 19.6 kA 

1
5
6.095

2
11
8.470

3
13
9.150

4
14
11.811

5
20
12.083

6
24
12.568
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Figure 1: 2-D XY cross-section (with bare cable) of the dipole model showing the block numbers.
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Figure 2: 2-D XY cross-section (with bare cable) of the dipole model showing the conductor numbers.
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Figure 3: Magnetic field contours for the 2-D cross-section, I = 19.6 kA.

The coil ends were designed using program BEND [
, 
] to minimize internal stresses in the cable. Some of the design and fabrication related issues for the coil ends are reported in [
]. Fig. 4 shows the YZ cross section of the return end along with the block numbers that correspond to the bock numbers for the 2-D cross-section shown in Fig. 1. The same YZ cross-section is shown in Fig. 5 with the z-axis dimensioned in mm. 

In general, some of the design objectives for the coil end optimization are (from [
]):

1. Minimum integrated multipole content in the coil ends.

2. Low enhancement of the field in the coil ends.

3. Minimum internal stresses in the cables.

4. Short length of the ends.

5. Homogeneous Lorentz force distribution in the innermost turn of the inner layer and in particular minimization of the variation in pressure on the narrow face of the conductor in order to avoid slip between the turns. 
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Figure 4: Return end YZ cross section (with insulated cable) of the dipole model with the block numbers shown.
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Figure 5: Return end YZ cross-section (with insulated cable) of the dipole model. The z-axis is dimensioned in mm.
In this note, we present the results of a 3-D magnetic analysis for the coil return end. Such an understanding is useful for optimizing the coil end design for the future dipole models. In particular, we have focused our attention on the peak fields and Lorentz force distribution in the ends. For the first dipole model, the coil ends were not optimized for minimum multipole content in the ends. The longitudinal distribution of the dipole field and multipole components in the ends is reported in [
], which also presents the results of a 3D magnetic analysis performed to optimize the length of the iron yoke.

2. Peak Field Calculations

The peak field calculations were performed using the computer program ROXIE. These calculations are based on the Biot-Savart law. For the 2-D cross-section, the iron yoke is regarded as a magnetic mirror of circular shape of inner diameter 120 mm and with a magnetic permeability of 1000. For the computer model, the iron yoke starts at z=0 and extends for 1 m inwards away from the end. However, note that the imaging method used in ROXIE does not allow to take into account the contribution of the iron yoke for the peak fields or Lorentz force calculations.
 This would imply that the field values computed in the proximity of the edge of the iron yoke (z = 0 mm) are not accurate. However, since the actual peak fields normally occur close to the coil termination and it has been shown previously [
] that the distance from the edge of the iron yoke to the region with peak field is sufficiently large to ensure that the contribution of the iron yoke can be neglected, therefore the present analysis is sufficient. The transport current in the cable is modeled by defining a current filament at the position of each strand (i.e., 2 x 14 filaments). The grading of current density in the conductor due to the keystoning is accounted for in the program ROXIE. The coil ends were modeled using the standard features available in program ROXIE. For this initial investigation, the dekeystoning of the cable at the ends was not accounted for.

Table 2 lists the maximum field in the end for each conductor block along with the z location of the point at which the peak field occurs. The corresponding linear field load line coefficients for the maximum field in each block of the return end as a function of the current are reported in Table 3. For comparative purposes, similar values for the straight section (obtained from Table 1) are also reported in Table 3. It is observed that the peak field in all the return end conductor blocks is higher than in the magnet body. Future optimization efforts would try to reduce the peak fields in the magnet ends.  

Table 2: Peak fields in the end for I=19.6 kA.
Block No.
Conductor No.
Peak Field (in T)

for I = 19.6 kA 
z (mm) location for peak field

1
5
6.346
27.2

2
11
8.818
74.37

3
13
9.445
38.78

4
14
12.053
28.02

5
20
12.339
18.87

6
24
12.831
24.93

Table 3: Comparison of field load line coefficients in the straight section and the return end.
Block No.
Conductor No.
Bmax/I (T/kA) for straight section 
Bmax/I (T/kA) for return end

1
5
0.311
0.324

2
11
0.432
0.450

3
13
0.467
0.482

4
14
0.603
0.615

5
20
0.616
0.630

6
24
0.641
0.655

Figure 6 shows the variation of the magnetic field along the z coordinate for each of the return end conductor blocks (for conductors with the peak field), while Figure 7 shows the enhancement in the magnetic field at the ends as compared to the magnetic field in the straight section for each conductor block. Figures 8 and 9 show the contour plots of magnetic field distribution for the outer and inner layers respectively.
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Figure 6: Magnetic peak fields in the end for each conductor block (OR-outer layer return end & IR-inner layer return end) for excitation current I = 19.6 kA.
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Figure 7: Normalized peak field (peak fields at the end normalized with the corresponding 2-D peak fields provided in Table 1) distribution for the return end.
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Figure 8: Magnetic field distribution for the return end- outer layer.
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Figure 9: Magnetic field distribution for the return end-inner layer.

3. Lorentz force distribution in the ends

Figure 10 shows a contour plot of the Lorentz forces per unit length for the 2-D cross-section for an excitation current of 19.6 kA. As expected these contours are similar to the magnetic field contours shown in Fig. 3. The resulting x and y direction Lorentz forces for each conductor block are summarized in Table 4.
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Figure 10: Lorentz force contours for the 2-D cross-section, I = 19.6 kA. Note that as expected these are similar to the magnetic field contours shown in Fig. 3.

Table 4: Lorentz force per unit length for the 2-D cross-section.

Block No.
Fx (kN/m) 
Fy (kN/m) 

1
242.6
-202.4

2
368.9
-364.9

3
243.4
-163.4

4
484.7
-48.4

5
875.5
-170.3

6
596.5
-112.9

Sum of all
2811.6
-1062.4

Table 5 summarizes the Lorentz force per quadrant in the x, y, and z directions for each conductor block of the return end. The total resulting longitudinal force per quadrant of the return end is 75.1 kN. Note that this information is useful for the design of the end plates.

Table 5: Lorentz force per quadrant for each conductor block of the return end.

Block No.
Fx (kN) 
Fy (kN)
Fz (kN) 

1
42.6
-30.0
10.8

2
52.4
-43.6
21.2

3
22.0
-12.9
9.0

4
73.1
-5.5
6.0

5
106.0
-18.1
19.9

6
50.0
-8.2
8.2

Sum of all
346.1
-118.3
75.1

Another important parameter in the design of the ends is the variation of Lorentz forces in the longitudinal direction of each block. The force in the z-direction for each individual conductor for the return end (RE) is shown in Fig. 11 for a current, I = 19.6 kA. Note that the Lorentz forces scale quadratically with current and thus forces at any other excitation current could be computed. Also note that the contribution of the iron yoke to the magnetic field in the end region is not taken into account. 
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Figure 11: Longitudinal force in all conductors, I = 19.6 kA
Fig. 12 shows the variation in the azimuthal Lorentz force per unit length for the return end. As expected the azimuthal force increases as one moves away from the end towards the magnet straight section and approaches the value for the 2-D cross-section near z=0.
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Figure 12: Azimuthal Lorentz force per unit length (N/mm) at I =19.6 kA for the return end. Note that for the straight section (z<0), the azimuthal Lorentz force approaches the value for the 2-D cross section (-2336 kN/m as given in Table 2 of Ref. [
]).
Figures 13 and 14 show the pressure distribution due to the Lorentz forces for the outer and inner layers respectively. As mentioned previously, we need to strive to achieve homogeneous Lorentz force distribution in the innermost turn of the inner layer and in particular to minimize the variation in pressure on the narrow face of the conductor in order to avoid slip between the turns. 
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Figure 13: Pressure due to Lorentz forces on surfaces for the return end-outer layer.
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Figure 14: Pressure due to Lorentz forces on surfaces for the return end-inner layer.
4. Summary

The peak field and Lorentz force distribution in the return end of the first dipole model, HFDA01 has been investigated. This study would form the basis for optimization of the ends for the next dipole models.

APPENDIX

For all the calculations reported here, a constant magnetic permeability of 1000 was used for the iron yoke for a current of 19.6 kA. It was later realized that iron saturates at a much lower current and a magnetic permeability value between 4 and 5 is a more real representative value for the iron yoke at higher currents. This would be incorporated in our future studies. However, note that since the effect of the iron yoke for the end fields and forces is very small (since the ends have a non-magnetic steel yoke surrounding them), the effect of using a higher magnetic permeability for the iron is very small for the end fields and force computations. 

For the 2-D fields, using an iron permeability of 1000 results in higher peak fields (Table 1) by a factor of 1.1 to 1.2 than using an iron permeability of 5, with the maximum increase for the block number 1. Similarly, the X- direction Lorentz forces (Table 2) for the 2-D cross section are higher by a factor of 1.12 to 2.22, with the maximum increase again for the block number 1. Note that there is not a significant increase in the Y-direction Lorentz forces (<1.02) due to the use of a higher iron permeability value.
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