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Abstract—The US-LHC Accelerator Project is re-
sponsible for the design and production of inner triplet
high gradient quadrupoles for installation in the LHC
Interaction Region. The quadrupoles are required to
deliver a nominal field gradient of 215T/m in a 70mm
bore, and operate in superfluid helium. As part of the
magnet development program, a series of 2m model
magnets have been built and tested at Fermilab, with
each magnet being tested over several thermal cy-
cles. This paper summarizes the quench performance
and analysis of the model magnets tested, including
quench training, and the ramp rate and temperature
dependence of the magnet quench current.

I. INTRODUCTION

The magnets being developed for the LHC Interaction
Region inner triplets are 2m long cold iron superconduct-
ing quadrupoles with 70 mm diameter bores. They consist
of two-layer cos(26) coils made of Rutherford NbTi cable
supported in the body by free-standing stainless steel col-
lars.

To date seven model magnets have been built and six of
them have been tested as part of the magnet development
program [1] at Fermilab. The first three model magnets
achieved field gradients higher than that required in the
LHC under collision condition; however, their quench per-
formance was not satisfactory. They exhibited long and
slow quench training [2] and also significant retraining was
observed on HGQO3.

To improve the quench performance of the model mag-
nets, several design and manufacturing modifications were
implemented. Details of the baseline design and the de-
sign optimization are described elsewhere [3] [5].

Significant improvement in magnet training was
achieved in HGQO05, and HGQO06 and HGQO07 were built
with incremental design changes (see Table I).
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TABLE 1
HGQ MAGNET DESIGN FEATURES

HGQO05 HGQO06 HGQO7
Inner Cable 38 strand 38 strand 37 strand
Right Lay Left Lay Left Lay
Outer Cable 46 strand 46 strand 46 strand
Left Lay Left Lay Left Lay
Cable insulation Kapton Kapton Kapton
Epoxy Polyimide Polyimide
Inner Coil additional additional additional
Target size 0.225 mm 0.175 mm 0.2 mm
Inner Coil
modulus 8 GPa 9.5 GPa 8.5 GPa
Outer Coil additional additional additional
Target size 0.15 mm 0.175 mm 0.2 mm
Outer Coil
modulus 11 GPa 9.5 GPa 8.5 GPa
End Part Config. 4 block design 5 block design 5 block design
End Part Material G10 G11 G11
End longitudinal 2000 1bs. 2000 1bs.
loading per bullet per bullet No end load P

a&Thermal Cycle 3 — no end load at the return end of the magnet.
bThermal Cycle 3 — end load to be applied at both ends of the
magnet.

II. TEST RESULTS

The magnets for this study were tested at the Fermi-
lab vertical magnet test facility (VMTF) [9]. All of the
magnets were tested at normal helium temperature first,
then cooled down to 1.9K. After training the magnet with
spontaneous quenches (20A/sec ramp rate), ramp rate
dependence studies were performed, followed by quench
protection heater studies and magnetic measurements (in-
cluding cleansing quenches at 10000A). The thermal cycle
was then finished with temperature dependence studies.
HGQO5 went through three, HGQO06 and HGQO7 (to date)
through two thermal cycles. Between thermal cycle two
and three, return end longitudinal preload for HGQO05 was
reduced to zero. During training of the magnets about
70% of the stored energy was extracted and dissipated
into an external dump resistor. Fig. 1 shows the quench
history for HGQ05, HGQO06, and HGQO7 to date.
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TABLE I
QUENCH PERFORMANCE SUMMARY

177"$'[A]  Quenches 157"t [A]  Quenches

TC1 <215T/m  TC2 < 215T/m
HGQO05 10896 2 12417 0
HGQO6 12224 0 12044 0
HGQO06 12101 0 12855 0

TABLE IIT
QUENCH LOCATION SUMMARY (AT 1.9K)
HGQO05 HGQO06 HGQO7
Pole  Wedge Pole Wedge Pole  Wedge

Inner Body 2 13 9 19 1 11
Inner End 2 1 5 0 5 5
Outer Body 4 14 0 0 2 0
Outer End 0 16 0 0 0 0

even at the very high Lorentz force levels, these mag-
nets might still be sensitive to preload. Turns next to
the wedge toward the midplane have non-radial alignment
which might require greater pre-compression to prevent
them from moving. HGQO06 has less preload in the inner
coil than the others which might explain its lower plateau.
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Fig. 5. Quench training history is plotted in normalized current

values. Open circles correspond to HGQO05, open squares to HGQO06
and solid diamonds to HGQO7.

B. Quench Current Temperature Dependence

Quench current as a function of the helium bath tem-
perature is plotted in Fig. 6. There was a monotonic
decrease of quench current with increasing temperature
for all three magnets. For HGQO05, quenches between 2.2-
3.0K originated in the outer coil near one of the inter-layer
splices. High resistive heating and restricted cable cool-
ing conditions might have been responsible for the reduc-
tion of HGQO5 quench current with respect to its short
sample limit. Splice cooling conditions were improved for
HGQO06 and HGQO7, and indeed no quenches occurred in
the splices around the lambda temperature.

The operating point for the high luminosity Interaction
Region magnets is 205 T/m, but the temperature at the
midplane of the coil is expected to be larger than that of
low luminosity IR magnets (which operate at 215 T/m)
due to higher beam losses. Under this condition the tem-
perature margin for HGQO06 and HGQO7 is about 2.1K.
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Fig. 6. Quench current temperature dependence. Circles correspond
to HGQO05, squares to HGQO06 and diamonds to HGQO07.
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Fig. 7. Quench current ramp rate dependence. Circles correspond
to HGQO05, squares to HGQO06 and diamonds to HGQO07.

C. Quench Current Ramp Rate Dependence.

Fig. 7 shows the dependence of the magnet quench cur-
rent vs. ramp rate for HGQO05, HGQO06, and HGQO7.
HGQO05 ramp rate sensitivity was similar to HGQO1 -
HGQO3 [5]. However both HGQO06 and HGQO07 showed
much lower quench current values at high ramp rates(see
Table IV). While high ramp rate quenches for HGQO05
were at the inter-layer splices, for HGQ06 and HGQO7
they appeared in the midplane turn of the coil. The high
ramp rate sensitivity shows direct correlation with AC loss



measurements. Further analysis revealed that the inter-
strand resistances significantly decreased for both HGQ06
and HGQO7 inner cable due to the curing temperature and
curing pressure increase.

TABLE IV
RAMP RATE SENSITIVITY

Coil curing cycle 1,(300A/s)

Temperature Pressure A
HGQO05 135 C High 10519
HGQO6 190 C High 6433
HGQO7 190 C High 4487

III. CONCLUSIONS

We have presented results from recent tests at Fermi-
lab of the latest model magnets developed for the inner
triplet LHC Interaction Regions. The last three model
high gradient quadrupoles show satisfactory and repro-
ducible quench performance. They quickly reached their
operating gradient and exceeded their operating gradient
before quenching after the first thermal cycle. Although
none of the magnets achieved their short sample limit
at 1.9K, the quench plateaus for all of them were well
above the nominal operating current. Two thirds of the
quenches were in coil turns next to the wedge. Measure-
ments of the temperature dependence indicate an operat-
ing margin of 2.1K at 205 T/m. At less than 100 A/sec
ramp rate the quench currents are well above the operat-
ing current and show no sensitivity to ramp rate.

High curing temperature and pressure resulted in lower
interstrand resistance, higher AC losses, and lower quench
performance at high ramp rates.
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