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Abstract

Errors in the placement of windings during manufacturing of mangetic �eld mea-

surement probes produce a systematic error in the measured �eld. These errors are

calculated for the general case. The speci�c case of a probe for measurement of LHC

IR quadrupoles is also considered.

The n-th �eld harmonic coe�cientCn is computed from the n-th Fourier transform coe�cient
of the 
ux by

Cn =
�n

Kn

where Kn is the sensitivity factor for the n-th harmonic. If the winding in question is an
m-pole winding, Kn = Kn(L;Rm) where L is the length and R the radius of the winding.
If the winding is a tengential winding, Kn = Kn(L;R;�) where we have additionally the
winding opening angle �. We use the error propagation formula for a multivariate function
f(x1; : : : ; xn). The uncertainty of the function f due to the uncertainties of the individual
xi.
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The partial deriviatives are given by
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and the uncertainty by
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Let us characterize our ability to put a dimension where it is supposed to by an uncer-
tainty �.
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Relating the uncertainty on the tangential coil opening angle (��) is more involved.
Each slot and, thus, each winding of the tangential coil is then uncertain by an amount �.
The uncertainty on the arc de�ned by the tangential coil winding (s) is uncertain by �.
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It can then be trivially shown that
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The uncertainty is
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where the last term is present only for a tangential winding.
The strength is measured by one of the bucking coil windings.
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For a dipole, n=1; and
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For a quadrupole, n=2; and
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The harmonics (n � 3),
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For a typical probe, L >> R;1 and the 1

L
term can be neglected. Thus, equations 3 and 4

reduce to
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respectively.
One can trivially solve Equation 5 to establish manufacturing tolerance requirements

given a desired uncertainty on measured strength. To achieve a 1 unit systematic error on
measured dipole (quadrupole), the fractional error on winding radius must be less than 1
part per 10000 (20000): �

R
< 1e�4 (5e�5). Placing radii (or measuring the placement) with

this accuracy is di�cult if not impossible. Thus it is necessary to calibrate the windings.
Cross calibration with respect to another probe can easily achieve this level of accuracy, and
it is often su�cient to know that the systematic di�erence in the �elds measured by di�erent
probes is below some speci�ed value. An absolute calibration of the probe is more di�cult
as one may not have a \standard" of su�cient accuracy. In practice one does the best
job possible at reasonable cost to place the windings; one measures the winding placement
carefully; one calibrates the probe with respect to the best standard available; and then one
compares the measured probe parameters with the calibrated values which provide knowledge
of the �eld with respect to some standard. The former give a measurement of the �eld which
is absolute but with a larger uncertainty than the latter. The di�erence between measured
and calibrated values must then be assessed; and discrepancies, if large, understood.

For harmonics, a systematic uncertainty of a few percent is adequate. For a typical
opening angle (13-15�), �

R
� 7e�4 gives a systematic uncertainty less than 1% for n � 15.

This requirement is less stringent than that imposed by the strength measurement. One
may also argue that calibration is not necessary.

As a speci�c example, let us consider the probe planned for use in LHC IR quad mea-
surements. I assume L >> R, a winding radius of 0.746 in. and an opening angle of 13� for
the tangential winding. Tables 1 and 2 summarize the systematic uncertainty of strength

1For the probe currently being used in the VMTF measurement system, L=0.8 m; R=0.02 m. The ratio

of 1

L
to 1

R
is 36.

3



and harmonics measurements respectively. Without calibration, the systematic uncertainty
on the strength is at the 0.3% level (best case) and 1.3% (worst case). The systematic
uncertainty on measured harmonics is 5% for n � 8 (10% n � 14) in the worst case scenario.

� [in] fractional error
5.00E-05 0.0001
0.0001 0.0003
0.0005 0.0013
0.001 0.0027
0.005 0.0134
0.01 0.0268

Table 1: Systematic uncertainty of �eld strength measured in LHC IR quadrupoles as a
function of a generic winding placement uncertainty �.

� 0.227 radians
R 0.746 in

� [in]
harmonic 0.0001 0.0005 0.001 0.005 0.010
3 0.001 0.002 0.004 0.02 0.04
4 0.001 0.003 0.005 0.03 0.06
5 0.001 0.003 0.007 0.03 0.07
6 0.001 0.004 0.008 0.04 0.08
7 0.001 0.005 0.009 0.05 0.10
8 0.002 0.005 0.011 0.05 0.11
9 0.002 0.006 0.012 0.06 0.13
10 0.002 0.007 0.014 0.07 0.14
11 0.002 0.007 0.015 0.07 0.16
12 0.002 0.008 0.016 0.08 0.17
13 0.002 0.009 0.018 0.09 0.19
14 0.002 0.009 0.019 0.10 0.21

Table 2: Systematic uncertainty of �eld harmonics measured in LHC IR quadrupoles as a
function of a generic winding placement uncertainty �.
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