										TD-98-024

Tools for Calibration of a 5 Winding Tangential Probe

Schlabach

V1.0 3/08/98

Described are tools for deriving calibrated radii and tangential coil opening angle for a 5 winding tangential probe. These are an implementation of the calculations described in [�]. There are 5 radii to determine: R(1), R(2), R(3), R(4), R(5); 5 angles: d(1), d(2), d(3), d(4), d(5); the opening angle of the tangential winding, D; and the “tilt” of the tangential winding, e. The windings are numbered as follows.

1�
2p1�
dipole bucking coil number 1�
�
2�
2p2�
dipole bucking coil number 2�
�
3�
4p1�
quad bucking coil number 1�
�
4�
4p2�
quad bucking coil number 2�
�
5�
tan�
tangential coil�
�

The method specifies that the dipole field is entirely normal and known (B1). We measure the follow parameters.

�
harmonic flux amplitude (phase)��
winding�
�
F1(1) (((1))�
dipole�
2p1�
�
F1(2) (((2))�
dipole�
2p2�
�
F1(5) ((1(5))�
dipole�
tan�
�
F2(3) (((3))�
quadupole�
4p1�
�
F2(4) (((4))�
quadupole�
4p2�
�
F2(5) ((2(5))�
quadupole�
tan�
�
F3(1) (((3))�
sextupole�
2p1�
�
F3(5) ((3(5))�
sextupole�
tan�
�

Calculation of calibration parameters utilizes a spreadsheet and one other program. The solution of the equation for the tangential winding “tilt”, (, is difficult to implement in a spreadsheet. We have chosen to solve it using an iterative approach implemented in FORTRAN 77. The process is two stage as the FORTRAN program requires knowledge of the tangential winding radius, R(5), and opening angle, (, which come from the spreadsheet. Phase angle calculations are not valid until the value of (is entered on the spreadsheet.

Spreadsheet

These parameters are input to the spreadsheet [�] shown below which is set

� EMBED Excel.Sheet.5 ���

up to provide the calibration parameters. Values input to the spreadsheet are shown in the red cells; output values are in the blue cells. Flux measurements are entered in the rows at the bottom of the spreadsheet. The known dipole field strength is input as well. Phases are given relative to winding 1 (2p1). If the phase angle of the 2p1 winding is known and entered in the appropriate cell, the absolute phase angles are calculated. Thus, the row labeled “phase (relative to winding 1)” will always have meaning. The row below, “phase angle”, has meaning only if the first cell contains the true value of the 2p1 phase angle.

As noted above the spreadsheet expects an input “epsilon” which is really a calibrated value from the FORTRAN program which solves for epsilon given the tangential winding radius and opening angle and certain flux measurements.

FORTRAN Code

The equation for (given in [1] is solved using the method of bisection over an interval known to contain a root of the equation. Measured (or calculated) values and set up parameters are input to the program via ASCII files. Two files are used. The first, solveForEpsilon.inp, contains the measured parameters needed by the code. The second, solveForEpsilon.par, contains the range over which to search for a solution and the desired resolution with which the solution is known. Sample files are appended. The user would fill in the numbers and put the files in the same directory as the executable. An example of program output is appended as well. The source code is contained in 4 files: solveForEpsilon.f, zbrac.f, RtBis.f, InputData.inc. The first interacts with the user. The second two are implementations of recipes from Numerical Recipes [�] routines which determine if a root of a function exists in a given interval (zbrac.f) and solve for a root in the interval using bisection (RtBis.f). The driving program reads in the inputs, produces an output table ((, f(() over the interval specified) which can be used for plotting, checks if a root exists, and solves for a root if one exists.

File�
use�
�
solveForEpsilon.inp�
measured/calculated input�
�
solveForEpsilon.par�
search range, desired resolution�
�
solveForEpsilon.dat�
output table ((, f(())�
�
solveForEpsilon.f�
main routine�
�
zbrac.f�
checks for a solution in an interval�
�
RtBis.f�
finds a root in the interval�
�
InputData.inc�
contains common block for passing input values�
�

�
Appendix A: solveForEpsilon.inp

flux_harm_phas_1_1 0.556539

flux_harm_phas_3_1 0.556539

flux_harm_phas_1_5 1.641445

flux_harm_phas_3_5 1.592931

R_5 0.031097

delta 0.227013

�
Appendix B: solveForEpsilon.par

eps_min -2.0e-5

eps_max 2.0e-5

epsResln 4.0e-7

�
Appendix C: Sample Output

* dipole flux_harmonic_phase measured by the 2p1 coil:	0.5565390000

* sextup. flux_harmonic_phase measured by the 2p1 coil:	0.5565390000

* dipole flux_harmonic_phase measured by the tan coil:	1.6414450000

* sextup. flux_harmonic_phase measured by the tan coil:	1.5929310000

* tan coil average radius [m]:					0.0310970000

* tan coil opening angle [radians]:				0.2270130000

* searching between -0.2000E-04 and 0.2000E-04 (tolerance: +- 0.4000E-06)

* plot of function (epsilon, f(epsilon) between -0.2000E-04 and 0.2000E-04

 is in solveForEpsilon.dat

* root found between -0.2000E-04 and 0.6830E-03

* root found at 0.2543E-03

�
Appendix D: solveForEpsilon.f

Program solveForEpsilon

 Implicit None

 Include 'InputData.inc'

 Real*8 FUNC

 Real*8 RtBis

 Integer i

 Integer InpFileLun /30/

 Integer ParFileLun /31/

 Integer OutFileLun /32/

 Real*8 flux_harm_phas_1_1

 Real*8 flux_harm_phas_3_1

 Real*8 flux_harm_phas_1_5

 Real*8 flux_harm_phas_3_5

 Real*8 delta_1_15

 Real*8 delta_3_15

 Real*8 epsilon

 Real*8 f

 Real*8 increment

 Real*8 answer

 Real*8 eps_min, eps_max

 Real*8 epsResln

 Character*32 name

 Character*32 InpFileName /'solveForEpsilon.inp'/

 Character*32 ParFileName /'solveForEpsilon.par'/

 Character*32 OutFileName /'solveForEpsilon.dat'/

 Logical OK

C Executable code begins here

C Read measured parameters (fluxes are measured, R_5, delta

C previously calculated)

 open(InpFileLun,file=InpFileName,form='formatted',

 + access='sequential',status='old')

 read(InpFileLun,*) name, flux_harm_phas_1_1

 read(InpFileLun,*) name, flux_harm_phas_3_1

 read(InpFileLun,*) name, flux_harm_phas_1_5

 read(InpFileLun,*) name, flux_harm_phas_3_5

 read(InpFileLun,*) name, R_5

 read(InpFileLun,*) name, delta

 close(InpFileLun)

 delta_1_15 = flux_harm_phas_1_1-flux_harm_phas_1_5

 delta_3_15 = flux_harm_phas_3_1-flux_harm_phas_3_5

 h = delta_1_15 - delta_3_15

C Read setup parameters

 open(ParFileLun,file=ParFileName,form='formatted',

 + access='sequential',status='old')

 read(ParFileLun,*) name, eps_min

 read(ParFileLun,*) name, eps_max

 read(ParFileLun,*) name, epsResln

 close(ParFileLun)

C Echo inputs/setups

 Write (*,10) 'dipole ', '2p1', flux_harm_phas_1_1

 10 format(' *',1x,a,1x,'flux_harmonic_phase measured by the',

 + 1x,a,1x,'coil:',2x,f20.10)

 Write (*,10) 'sextup.', '2p1', flux_harm_phas_3_1

 Write (*,10) 'dipole ', 'tan', flux_harm_phas_1_5

 Write (*,10) 'sextup.', 'tan', flux_harm_phas_3_5

 Write (*,20) R_5, delta

 20 format(' * tan coil average radius [m]:',27x,f20.10,/,

 + ' * tan coil opening angle [radians]:',22x,f20.10)

 Write (*,30) eps_min, eps_max, epsResln

 30 format(/,' * searching between',1x,e11.4,1x,'and',1x,e11.4,1x,

 + '(tolerance: +-',e11.4,')',/)

C First make a plot

 open(OutFileLun,file=OutFileName,form='formatted',

 + access='sequential', status='new')

 increment = (eps_max - eps_min)/100.

 do i=1,100

 epsilon = eps_min + float(i-1)*increment

 f = FUNC(epsilon)

 write(OutFileLun,*) epsilon, f

 enddo

 close(OutFileLun)

 write (*,100) '*', eps_min, eps_max, OutFileName

 100 format(1x,a,1x,'plot of function (epsilon, f(epsilon) between',

 + 1x,e11.4,1x,'and',1x,e11.4,/

 + 3x,'is in',1x,a,/)

C Now see if there is a solution

 Call zbrac(FUNC,eps_min, eps_max, OK)

 if (.not.OK) then

 write (*,200) ' * no', eps_min, eps_max

 200 format(a,1x,'root found between',1x,e11.4,1x,'and',1x,e11.4)

 else

 write (*,200) ' *', eps_min, eps_max

C And try to find it

 answer = RtBis(FUNC, eps_min, eps_max, epsResln)

 write (*,210) answer

 210 format(' * root found at',1x,e11.4)

 endif

C

 stop

 end

 Real*8 function FUNC(epsilon)

 Implicit None

 Include 'InputData.inc'

 Real*8 epsilon

 Func = 1./3.*atan(3.*epsilon/R_5/tan(3*delta/2))

 + - atan(epsilon/R_5/tan(delta/2)) - h

 return

 end

�
Appendix E: zbrac.f

 subroutine zbrac(FUNC, X1, X2, SUCCES)

C Given a function FUNC and an initial guessed range X1 to X2, the routine

C expands the range geometrically until a root is bracketed by the returned

C values X1 and X2 (in which case SUCCES returns as .TRUE.) or until the

C range is unacceptably large (in which cas SUCCES returns as .FALSE.)

 Implicit None

 Real*8 FUNC

 Integer j

 Integer ntry

 Parameter (ntry = 50)

 Real factor

 Parameter (factor = 1.6)

 Real*8 X1, X2

 Real*8 F1, F2

 Logical SUCCES

C Executable code begins here

 if (X1.eq.X2) PAUSE 'You have to guess an initial range'

 F1=FUNC(X1)

 F2=FUNC(X2)

 SUCCES = .true.

 do j=1,ntry

 if (F1*F2.lt.0) RETURN

 if (abs(F1).lt.abs(F2)) then

 X1 = X1 + factor*(X1-X2)

 F1 = FUNC(X1)

 else

 X2 = X2 + factor*(X2-X1)

 F2 = FUNC(X2)

 endif

 enddo

C If we got this far we didn't find a solution

 SUCCES = .false.

 return

 end

�
Appendix F: RtBis.f

Real*8 Function RtBis(FUNC, X1, X2, Xacc)

C Using bisection, find the root of a functino FUNC known to be between X1

C and X2. The root, returned as RtBis, will be refined until its accuracy

C is +-Xacc

 Implicit None

 Real*8 FUNC

 Integer j

 Integer jmax

 Parameter (jmax = 40)

 Real*8 X1, X2, Xacc

 Real*8 Xmid

 Real*8 dX

 Real*8 F, Fmid

C Executable code begins here

 Fmid = FUNC(X2)

 F = FUNC(X1)

 if (F*Fmid.ge.0.) PAUSE 'Root must be bracketed for bisection.'

 if (F.lt.0.) then ! orient the search so that F>0 lies at X+dX

 RtBis = X1

 dX = X2-X1

 else

 RtBis = X2

 dX = X1 - X2

 endif

 do j=1,jmax ! bisection loop

 dX = dX * .5

 Xmid = RtBis + dX

 Fmid = FUNC(Xmid)

 if (Fmid.le.0.) RtBis = Xmid

 if (abs(dX).lt.Xacc .or. Fmid.eq.0.) RETURN

 enddo

C If we got here we didn't get the required accuracy in the specified

C number of bisections

 PAUSE 'too many bisections'

 end

�
Appendix G: InputData.Inc

Real*8 R_5, delta, h

common /INPUTDATA/ R_5, delta, h

� In the nomenclature of MTF, these would be flux_harmonic_amplitude and flux_harmonic_phase, the amplitude and phase returned by an FFT of the raw signal.

		TD-098-024

		2

� P. Schlabach, “Calibration of a 5 Winding Tangential Probe”, TD-98-021.

� The spreadsheet (TD-98-024.xls) is located on the TDPC01 server in the TD notes library.

� W. Press, et., al., “Numerical Recipes, the Art of Scientific Computing", Fortran Version, 1989, pp. 243-247.

