Table of Contents

Table of Contents 3
Executive Summary 5
Introduction 6
Technical Systems 7
 Detectors and CRT 7
 Electronics and DAQ 10
Project Management 13
 Cost and Schedule 13
 ESH&H 16
 Management 19
Appendices 22
1.0 Executive Summary

A Director’s Review of the Short Baseline Near Detector (SBND) portion of the Short Baseline Neutrino Program was held on December 19-20, 2016 at Fermilab. This review covered progress of the design, construction, and installation of the SBND detector system (TPC, cosmic ray tagger, light collection, electronics, DAQ) and its cryostat and cryogenic system.

The focus of this review was progress to date versus plan and the forecast for completion of the SBND. Topics included cost, schedule, management, ES&H, and technical readiness for the execution of the remainder of the SBND.

The assessment of the Review Committee was that the SBND component of the SBN Program is well managed and making good progress in almost all technical areas. There are two major technical issues that need to be resolved as soon as possible. These are 1) a decision regarding the plan of action for the front-end ADC and 2) filling the position of the Level 2 manager for Installation and Integration.

The Committee felt that the schedule for SBND is very aggressive and should be analyzed for ways of creating schedule float. It should also be used to identify and monitor critical path activities.

The SBND management presented a funding plan that is significantly higher than what is currently in the Laboratory’s planning for SBND and the overall SBN program. Significant funding extending into FY19 will be required to complete the SBND installation and commissioning.
2.0 Introduction

A Director’s Review of the Short Baseline Near Detector (SBND) portion of the Short Baseline Neutrino Program was held on December 19-20, 2016 at Fermilab. This review covered progress of the design, construction, and installation of the SBND detector system (TPC, cosmic ray tagger, light collection, electronics, DAQ) and its cryostat and cryogenic system.

The focus of this review was progress to date versus plan and the forecast for completion of the SBND. Topics included cost, schedule, management, ES&H, and technical readiness for the execution of the remainder of the SBND.

This report provides the assessments of the Project’s design of technical deliverables and project management. Each section is generally organized by Findings, Comments and Recommendations followed by the Answers to Charge Questions. Findings are statements of fact that summarize noteworthy information presented during the review. The Comments are judgment statements about the facts presented during the review and are based on reviewers’ experience and expertise. The Comments are to be evaluated by the Project Team and actions taken as deemed appropriate. Recommendations are statements of actions that should be addressed by the Project Team. The SBN Program is to present responses to recommendations to the Laboratory Management. The recommendations will be tracked to closure. Documented status of the Program’s resolution of the recommendations will need to be available for future reviews.

The Appendices contain the reference materials for this review. The Charge for this review is shown in Appendix A. The review was conducted per the agenda shown in Appendix B. The Reviewers’ assignments and contact information are noted in Appendix C.
3.0 Technical

3.1 Detectors and CRT

Subcommittee: Jen Raaf, Dervin Allen, Russ Rucinski

Charge Questions:

- Is the overall progress on the design and construction of the SBND technical scope consistent with the planned milestones?

 Yes, at this point in time. However, there is no slack in the schedule, and there are many parallel activities.

- Have independent design reviews been conducted?

 For the **TPC**: the APA, CPA, HV feedthrough design reviews have been conducted, and the TPC wire winding review is scheduled for January 2017.

 For the **Photon Detection System**, an independent design review was completed in November 2016.

 For the **Cosmic Ray Tagger**, safety engineering design reviews and a technical engineering design review have been conducted. The installation design review for the bottom layer is scheduled for January 2017.

 The **Laser Calibration System** design is based on the implemented MicroBooNE LCS, with some improvements to the rotation units. A prototype of the updated rotation unit is being tested at Bern. The system will undergo a safety review in 2017, but date is still to be determined.

 The **Interface/Assembly/Installation** design plans will need to be reviewed when plans have been developed. Review is scheduled for March 2017.

- Based on the design reviews, are the designs sound and likely to meet the performance requirements?

 For the reviews that have been conducted, designs appear to be sound and are likely to work as required.

- Are interfaces adequately defined?
Unclear. No interface documentation was shown. Interfaces within the TPC are handled by an integration model.

Findings

- **TPC**
 All four APA bare frames are built and surveyed, and one is fully completed with machined holes. Survey finds flatness achieved within 2.5mm tolerance, with additional shims allowing fine adjustments at 0.5mm scale. The APA wire stringing machine design is complete, and a small prototype APA was built and strung for demonstration of capability. APA wire-stringing and cold-testing to be completed by late August 2017.

 A transparent mesh CPA design has been completed, taking into account recommendations from previous reviews. Delivery of bare frames is expected in March 2017. Prototyping for sub-frame assembly is underway.

 The HV feedthrough design, adapted from ICARUS & 35-ton, has been finalized. Modifications were made to address recommendations from design review for reducing electric field. HV testing of both FTs is planned.

 The field cage design is completed, with roll-formed metallic profiles that were proven to work in a CERN prototype. Voltage divider board components have been tested extensively in MicroBooNE.

 TPC electric field simulations (done in response to feedback from a previous review) show peak E field regions are safely below the design requirement of 30 kV/cm maximum.

- **PMT**: The PMT subsystem, which is entirely funded through a LANL LDRD, has a design requirement of ~100 ns timing resolution maximum. A stretch goal of a few ns resolution, if achieved, would allow improved background rejection and enhanced physics reach. The design philosophy is to require that all hardware components in the system achieve ~nsec level timing, so that the performance will not be limited by hardware.

- **CRT**: The finalized CRT design satisfies all of the design requirements, and a good fraction of the panels have already been produced. Bottom panels have been delivered to Fermilab, and side panels are in production now.

- **Laser Calibration System**: The LCS design is based on the system that was implemented and is functioning in MicroBooNE. Some improvements have been made to the rotating unit.

- **Assembly/Installation**: The TPC assembly plans are judged to be at a preliminary phase at this time. The assembly sequence and frame design needs more intensive attention to be
adequately fleshed out by the March 2017 review. There are only five months between the March review and August 2017 when the assembly frame is needed.

Comments

- The schedule is aggressive, and detector subsystems and components arrive at Fermilab very close to their installation dates. The installation plan should consider ways to develop float to mitigate possible delays in delivery of components.

- Design of the cryostat top is critical and will begin soon. Revelations about possibly having to ship it in multiple pieces complicates design choices. The impact on system performance should be evaluated.

- The warm cryostat design is still changing, but panels for the bottom layer of the CRT have already been built. The warm cryostat footprint should be maintained so that the interface to the CRT bottom layer is not compromised.

Recommendations

1. Formally communicate and negotiate for floor space needs and required time span in DAB and other buildings as early as possible to allow appropriate parties to clean up/clear out space as necessary.

2. Fill the L2 installation manager role as soon as possible. Installation and integration of both the near detector and far detector at the same time by the same individual is not feasible.

3. Create and/or review and formalize interface documents
3.2 Electronics and DAQ

Subcommittee: James Proudfoot, Stephen Pordes, Carl Bromberg

Charge Questions:

- Is the overall progress on the design and construction of the SBND technical scope consistent with the planned milestones?
 Yes – based on the adjusted schedule, provided the ADC issue is resolved on the projected schedule.

- Have independent design reviews been conducted?
 Yes

- Based on the design reviews, are the designs sound and likely to meet the performance requirements?
 This is not yet determined for the cold ADC ASIC and could have implications for other considered solutions. Other parts of the electronics and the DAQ and readout seem in good shape.

- Are interfaces adequately defined?
 Yes. Some progress has been made in this area, but more should be developed e.g installation in the building, and integration with other detector-subsystems in the DAQ.

Findings

- The SBND team presented progress reports on the electronics system: TPC cold electronics; TPC backend electronics; readout and DAQ; integration and testing.

- System requirements based on physics performance were not presented but have been reviewed in previous reviews. A re-evaluation of these is in progress and should be completed in early 2017, and will provide updated specifications including those of noise, linearity, dynamic range: A draft analysis is available and will be presented in late January at the next collaboration meeting.

- Two senior ASIC engineers have left BNL very recently; a search is in process to hire additional engineering at BNL and discussions are in progress to identify resources available in the Fermilab microelectronics group.

- Three paths for the ADC were described; it was stated that a selection is to be made in late June 2017.
The back end electronics and readout design is based on MicroBooNE. It was stated that more than 12 bits of data/word would be hard to accommodate in the readout system.

The backend readout has been tested successfully starting from the warm electronics board.

A complete integration test stand is planned at DAB.

The feedthrough design has been completed and a prototype is undergoing acceptance testing.

The SBND presented a carefully thought out plan for grounding and shielding. This includes monitoring hardware to ensure that the ground integrity is maintained throughout construction and installation.

The SBND team has significant overlap with the MicroBooNE team in the area of readout and DAQ. The people who led the design and implementation of the system for MicroBooNE are the same people designing the system for SBND with the major difference being the implementation in artdaq. Test stands will be used to develop artdaq software and develop the necessary expertise for SBND.

Comments

- LAr signals on a wire for a MIP involve at least 4-5 samples significantly above the noise. The signal shape in time on an isolated ionization deposition is well defined by the approximate drift distance. A loss of resolution or a rarely missing sample is correctable to allow a total charge reconstruction with an uncertainty that is comparable to the natural ionization fluctuations (rms ~ 20%). This should be considered in the assessment of the updated ADC specifications.

- It is re-assuring to note that SBND is proposing AC coupling between the front-end amplifier and the ADC. This allows an independent setting of the pedestal for the ADC, moving the dynamic range into the region where ADC problems are minimized.

- The requirements for sensitivity and dynamic range of the ADC are a little vague - e.g. how much is lost if the top end is lower; how much precision is lost if lower end is less sensitive. We encourage a rapid response to the proposal that will be made at the upcoming collaboration meeting.

- The SBND team should consider 100% testing of the cold ASICs.
SBND has more time than protoDUNE. Design resources are a major issue. Careful planning will be needed for resources to be allocated given the schedules of protoDUNE and SBND.

There may be benefit in broadening the search for electronics engineering beyond BNL and Fermilab.

There is a concern about monitoring and understanding data should the full electronics chain not function as designed. We encourage the SBND team to consider possibilities such as developing a lightweight sampling of data as part of the online monitor or through the Ethernet interface on the WIB.

The SBND readout and DAQ team identified their top three areas of concern: 1) finalizing the Photon Detector System (PDS) readout scheme and in particular the integration of the PDS-based trigger; 2) the cold ADC ASIC and what can be expected for the next version; 3) the test results from the commercial ADC board.

The SBND team might benefit from a set of commitments describing the contributions of the subsystem-builders to the readout of their hardware.

Recommendations

4. Identify and obtain the new resources for the cold electronics before the spring of 2017.

5. Closely monitor the PDS readout scheme and integration

6. Schedule an early review of the test results for the commercial ADC

7. Update the ADC requirements in a timely way to provide input to the ADC decision

8. Review interface documentation as part of the technical design review, identify missing interface details, and implement a plan to document them.
4.0 Project Management
4.1 Cost and Schedule

Subcommittee: Bill Freeman, Ami Dave

Charge Questions:

- Are the cost and schedule estimates for remaining DOE-funded SBND work credible and realistic?

 Yes - for planned cost

 Yes - for schedule, provided revised funding profile can be accommodated.

- Is the proposed spending profile of DOE funds consistent with the projected available budget?

 No, per the funds currently loaded into the FNAL system. The proposed spending profile exceeds the current funding available.

- Has adequate scope and schedule contingency been identified?

 Scope contingency – No. Based on currently available funding, the proposed DOE scope cannot be accomplished. The project has therefore identified a need for additional funds in FY18 and FY19.

 Schedule contingency – No. Since there is no formal target/baseline date for project finish (aka CD-4) schedule contingency/float does not exist in the same way that it does for a 413 project.

Findings

- SBND has a Work Breakdown Structure (WBS) and associated Organizational Breakdown Structure (OBS) that helps define necessary deliverables and responsibilities. It is embedded within the larger universe of the SBN Program.

- SBND continues to use Microsoft Project (MSP) as their scheduling tool. The MS Project schedule is organized around the SBND WBS elements.
The SBND WBS 2 schedule now has 946 activities/milestones that cover Near Detector work scope. Some elements of the schedule have evolved with the addition of more detail since last year’s review (e.g. electronics).

The funding sources for activities and WBS elements are identified.

Activities associated with the SBND DOE-funded portion of the scope in the MS Project schedule include relationships and resource assignments. Assigned resources include M&S and costed labor. Resource “flavors” include electrical and mechanical engineers/designers/drafters, technicians, and computing professionals.

The SBND non-DOE-funded activities, with relationships, are included in the MS Project file to facilitate progress tracking toward specified completion milestones associated with certain deliverables. Some of these activities are resource-loaded. Other in-kind activities in the schedule are not resource-loaded.

Various activity codes are utilized in MS Project to facilitate filtering, sorting and grouping/roll-up of activity, resource, budget, and funding source information.

Fully burdened and escalated time-phased budgets for the SBND DOE-funded scope are derived from the MS Project schedule and Cobra. Loading of time-phased budget and status information into Cobra continues to take place and CPR Format 1 reports were presented for the most recent months, with comparison to a “baseline” updated as of Nov 2016. SBND can currently evaluate cost and schedule performance, albeit against a “baseline” that is still rapidly evolving.

The current schedule is essentially a technically-driven one and has slipped approximately two quarters since last year’s review.

No critical path analysis was presented.

The project’s current contract scheduler will be leaving soon.

Comments

- The schedule remains aggressive. The past year’s schedule performance supports this conclusion (~ 6 months slippage in one year).
- The reviewers commend the program for having EV data available.
- The MSP schedule for electronics has undergone substantial development and refinement since last year’s review.
• The MSP schedule for the SBND cryostat installation awaits further developments from CERN before it can be refined and resource-loaded in more detail.

• Understanding the project’s critical path can be very helpful when making budget and schedule decisions. The SBND detector (and the SBN Program) should take advantage of their scheduling capabilities and utilize critical path analysis.

• Budget estimates appear to be reasonable.

• SBND management should continue to take advantage of earned value data as a tool for assessing project health.

Recommendations

9. Identify a replacement for the project’s scheduler.

10. Continue to develop and refine the SBND (and SBN Program) resource-loaded schedule.

11. By the end of FY17Q2 establish a formal baseline in MSP and Cobra to facilitate the best possible analysis of schedule and cost performance.

12. Formulate a plan to address funding shortfalls or delays.
4.2 ESH

Subcommittee: Dave Mertz

Charge Questions:

- Is ES&H being appropriately addressed?
 Yes. Experiment personnel have demonstrated an awareness of environmental, safety, and health requirements in their presentations given in the breakout sessions. The particular hazards associated with liquid argon (LAr) detectors with beryllium-containing components have already been defined by the work on previous LAr detectors as well as methods for successfully mitigating them.

- Are the required environmental approvals, permits, and safety approvals on track to meet the schedule?

 Yes. The ES&H permits and approvals process for the facility to house the SBND detector has been well integrated into the facility construction process. The facility construction process is nearing completion, and there appear to be no significant hurdles to achieving a successful closure of the facility construction process. The permitting for experimental equipment remains to be completed, but the process appears to be well understood and effectively guided by the personnel leading the Detector Assembly and Installation and Electronics Integration and Installation efforts. The process for establishing the safety equivalency of cryogenic, electrical, mechanical, and structural equipment designed and constructed to international standards has been developed by Subject Matter Experts, approved by FRA senior management, and accepted by the DOE Fermi Site Office manager. Two mechanical/cryogenic standards have received acceptance.

Findings

- Facilities and equipment installed at Fermilab must follow the Fermilab Environmental, Safety, and Health Manual (FESHM) requirements and the Work Smart Standards which are part of the contract between the United States Department of Energy (DOE) Fermi Research Associates (FRA). EU institutions are among those participating in the Program. Differences exist between the EU standards and those that must be followed at the Fermilab site. A procedure for establishing safety equivalency has been created and is codified in FESHM Chapter 2110. This has been and continues to be actively used to establish safety equivalencies.
• An impedance grounding system to reduce electromagnetic interference (EMI) is planned for the detector. This grounding system follows the same architecture as was used for MicroBooNE, so permitting of the SBND grounding detector grounding system is not expected to present significant hurdles.

• Material handling of the large detector components, both at the D-0 Assembly Building (DAB) and at the SBND building, can create hazards for personnel. The finite space for storage and staging can foster congestion unless use of the space at these facilities is well-planned.

Comments

• The activities to construct and install the detectors and their supporting electrical, electronic, and cryogenic systems will present hazards to the workers. Design systems and plan installations carefully to minimize the hazards to which workers will be exposed. SBND has chosen to use a Hazard Analysis Report to perform an up-front identification of hazards and the means that can be used to mitigate them. Use the Fermilab Hazard Analysis process to identify job and task specific hazards and assure worker awareness of the hazards present and the means to be used to mitigate them.

• The anode plane assemblies use copper-beryllium wires. These anode plane assemblies were described as being delivered to Fermilab as completed assemblies. These assemblies shall be identified on drawings as containing beryllium, and labels shall be placed on the detectors to identify them as containing beryllium. If these wires must be repaired or replaced when at the laboratory, the workers doing so must receive appropriate training on beryllium hazards and follow safe work practices.

• Integrate means of access from the facility floor or grade level to the detector tops and other parts of the detectors that may need to be accessed. Evaluate providing permanent means of access for places where it is reasonably expected that frequent access will be needed during installation and commissioning or where periodic access will be required once detector installation is completed.

• Provide adequate lengths and sufficient support for cables and hoses so that they and their connectors are not placed under unnecessary tension or strain or create personnel hazards.

• Plan the physical arrangement of electrical equipment, conduit, and cable tray, and of mechanical piping and equipment, to preserve required working spaces, permit ready access
to and through electrical and mechanical equipment areas, and offer ergonomically benign working conditions.

- Locate permanent electrical receptacles to eliminate the use of extension cords and power strips (other than rack-mounted power distribution modules) once detector installation is complete, and to facilitate installation and commissioning work as well as periodic servicing or maintenance.

- It is easy to create inadvertent connections between isolated or ungrounded electrical systems or “Detector Grounds” and the regular building grounding system. Carefully plan the electrical isolation between these systems, including structural isolation, such as between detectors and the floors on which they rest, electrical connections, and isolation fittings in piping systems. The plan to use an injected signal alarm system such as was done for MicroBooNE is encouraged as an efficient method for identifying unintended grounds at the time they are created.

Recommendations

13. Identify any more international standards to which equipment contributions from international partners will be constructed as early as possible so adequate time is provided to perform the safety equivalency reviews and implement the revisions to FESHM.

14. Submit the statement of equivalency for the saturable inductor impedance grounding system as soon as the documentation can be completed to expedite approval by the electrical AHJ.

15. Design large detector components to facilitate on-site assembly and installation, paying particular attention to lifting, rigging, working at heights, entrapment, and pinch points.

16. Locate detector components and subassemblies that may require servicing during experiment operation in readily accessible places and connect with fittings and mountings that will ease and expedite service procedures.

17. Where practical, design detector components and subassemblies with dimensions and weights that do not exceed facility constraints, such as door opening dimensions, overhead clearances, and crane lifting capacities. This will help avoid the use of material handling means and methods that may pose additional risks to personnel, detector components, and other property.
4.3 Management

Subcommittee: Gina Rameika

Charge Questions:

- Are the non-DOE deliverables on track for completion of the SBND?

The non-DOE deliverables include the cryostat (CERN/INFN), the proximity cryogenics (CERN), the cosmic ray tagger and laser system (BERN), the electronics readout system (NSF/Columbia University) and the PMT system (LANL/LDRD), TPC Components (UK-STFC, NSF).

Each of these deliverables appears to be on track for on-time delivery for installation in the SBND. The program will continue to work closely with CERN/INFN on the plan for the cryostat delivery.

- Is the program being properly managed for the successful execution of the SBND?

The SBN Program is managed in a coherent way. The SBND is managed by Ting Miao, the L1 manager. L2 and L3 managers are identified and have ownership of the technical scope. The L1 manager has overall responsibility for tracking the costs and maintaining the schedule, in coordination with the Program Coordinator, Peter Wilson. This is a little different than one might find in a formal DOE 413 project where the cost tracking is at a lower level, but due to the diversity and uncertainty of the funding sources and funding availability, the Program has chosen a sensible approach.

SBND uses an appointed Technical Board to review technical issues and make decisions.

SBND has adopted various elements of formal project management but uses a graded approach in the implementation. More formality in configuration control is probably warranted.

- Are the projected resources sufficient to complete design, construction, and installation of the SBND and are these resources likely to be available when needed?

SBND management presented an updated profile for the funds required to complete the SBND detector, in the context of the overall SBN program. At this time it appears that additional funds over the present allocated funding, of order $3M in the SBND R&D B&R will be required over FY18 and FY19. Additional funding beyond the current plan, for the overall SBN program will also be required.

Additional mechanical engineering and design is needed for work on installation and integration.
The staffing available for electrical integration is over committed.

- Are there significant risks that remain to be understood and are they being adequately managed?

Project management has identified three major issues (which translate into risk) that need to be managed and mitigated.

These are 1) cold electronics (ADC) design and eventual construction, 2) timely design of the cryostat top plate and 3) availability of a L2 manager for installation and integration.

In response to these issues SBND Management and the Collaboration Leadership are working together to evaluate the options for the ADC. Decisions on a course of action should be made within the next several months. Major effort is going into ensuring that all of the interfaces between the top plates (fixed and removable) and all other elements inside and outside of the cryostat are being properly defined. This requires close communication with the CERN design team and is being monitored by the Program manager.

Findings

- A funding profile was presented that includes an additional $3M in the SBN R&D B&R that is above the anticipated profile that was presented one year ago.

- SBND has initiated the use of an Interface Control Matrix but it has not been updated since the Spring of 2016.

- SBND does not have a formal Configuration Control Procedure.

- SBND has identified a need for a dedicated L2 manager for Installation and Integration.

Comments

- The updated funding profile that was presented is a minimum of what will be needed to complete the delivery of the SBND detector.

- Setting a baseline estimate for the Cost to Complete is an important step towards defending the increased funding request,

- SBND management should consider developing more formal configuration control.
• SBND management should work with the laboratory to determine when the next status review should take place; at this critical time it seems that a once a year review may be too long of a duration to monitor progress on critical items.

Recommendations

18. Work with the Laboratory and the DOE to get an agreed upon funding profile for FY17, FY18 and FY19.

19. Update and regularly maintain the Interface Control Matrix and associated documentation.

20. Work with the Laboratory and the SBND collaboration to identify the L2 for Installation and Integration as soon as possible.
5.0 Appendices

A. Charge

B. Agenda

C. Review Committee Contact List and Writing Assignments
Appendix A

Charge

Director’s Progress Review of SBN
December 19-20, 2016

Memorandum

November 9, 2016

To: Mike Lindgren, Chief Project Officer

From: Nigel Lockyer, Director

Subject: Director’s Progress Review of the Short Baseline Neutrino Program

Please organize and conduct a Director’s Review on December 19-20, 2016 to assess the progress of the Short Baseline Near Detector (SBND) portion of the Short Baseline Neutrino Program. This review should cover the design, construction, and installation of the SBND detector system (TPC, cosmic ray tagger, light collection, electronics, DAQ) and its cryostat and cryogenic system.

The focus of this review is progress to date versus plan and the forecast for completion of the SBND. Topics will include cost, schedule, management, ES&H, and technical readiness for the execution of the remainder of the SBND. The review committee should respond to the following questions:

1. Design and Scope. Is the overall progress on the design and construction of the SBND technical scope consistent with the planned milestones? Have independent design reviews been conducted? Based on the design reviews, are the designs sound and likely to meet the performance requirements? Are interfaces adequately defined?
2. Cost and Schedule. Are the cost and schedule estimates for remaining DOE-funded SBND work credible and realistic? Is the proposed spending profile of DOE funds consistent with the projected available budget? Has adequate scope and schedule contingency been identified?
3. Non-DOE Contributions. Are the non-DOE deliverables on track for completion of the SBND?
4. Management. Is the program being properly managed for the successful execution of the SBND? Are the projected resources sufficient to complete design, construction, and installation of the SBND and are these resources likely to be available when needed? Are the significant risks that remain understood and being adequately managed?
5. Environment, Safety, and Health. Is ES&H being appropriately addressed? Are the required environmental approvals, permits, and safety approvals on track to meet the schedule?

The committee is asked to present a draft of their report at the review closeout and to issue the final report within three weeks of the review’s conclusion.

Nigel Lockyer
Director
Fermi National Accelerator Laboratory
Appendix B

Agenda

Director’s Progress Review of SBN
December 19-20, 2016

Monday, December 19, 2016

8:00 am Full Committee Executive Session – Comitium (WH2SE) Gina Raneika
8:30 am Welcome .. Nigel Lockyer
8:35 am SBN Program Introduction – One West (WH1W) Peter Wilson
8:45 am SBN Overview and Schedule .. Ting Miao
9:45 am Cryostat .. Marzio Nesi
10:15 am Break ...
10:45 am Cryogenics .. Michael Gensman
11:15 am Cryo-Detector Integration ... Min Jeong Kim
11:45 am ESH ... Angela Aparicio
12:30 pm Lunch – 2nd Floor Crossover

Breakout Session 1 – Detectors and CRV – Black Hole (WH2NW)
ReadyTalk: 866-740-1260, Password: 8408415
1:30 pm TPC Component Fabrication .. Kostas Mavrokoridis
2:00 pm PMT .. Richard Van de Water
2:30 pm Break food available outside Comitium (WH2SE)
2:30 pm Cosmic Ray Tagger and Laser Calibration Igor Kreslo
3:00 pm Detector Assembly and Installation Andy Stefanik
3:45 pm Open Q/A ..

Breakout Session 2 – Electronics and DAQ – Snake Pit (WH2NE)
ReadyTalk: 866-740-1260, Password: 3201326
1:30 pm TPC Electronics .. Iluucheng Chen
2:15 pm TPC Backend Electronics ... Jose I. Crespo-Anadon
2:30 pm Break food available outside Comitium (WH2SE)
2:30 pm Readout and DAQ ... Georgia Karajorgi
3:15 pm Electronics Integration and Installation Linda Bagby
4:00 pm Open Q/A ..

Breakout Session 3 – Management, Cost & Schedule, EH&S - Comitium (WH2SE)
1:30 pm TBD ... TBD

4:30 pm Full Committee Executive Session – Comitium (WH2SE) Gina Raneika
5:30 pm Adjourn

Tuesday, December 20, 2016

8:00 am Full Committee Working Session – Comitium (WH2SE) Committee
11:00 am Committee Working Lunch
11:00 am Full Committee Executive Session/Dry Run Committee
1:30 pm Closeout – One West (WH1W)
2:30 pm Adjourn
Appendix C

Review Committee Contact List and Writing Assignments
Director’s Progress Review of SBN
December 19-20, 2016

Chairperson

Gina Rameika, FNAL 630-840-2262 rameika@fnal.gov

Review Committee

Detectors
Jen Raaf*, FNAL 630-840-8044 jlraaf@fnal.gov
Dervin Allen, FNAL 630-840-2511 dervin@fnal.gov
Russ Rucinski, FNAL 630-840-2888 rucinski@fnal.gov

Electronics and DAQ
James Proudfoot*, ANL 630-252-4357 proudfoot@anl.gov
Stephen Pordes, FNAL 630-840-6898 stephen@fnal.gov
Carl Bromberg, MSU 517-884-5580 bromberg@pa.msu.edu

Cost and Schedule
Bill Freeman*, FNAL 630-840-3020 wfree@fnal.gov
Ami Dave, FNAL 630-840-8072 adave@fnal.gov

ES&H
Dave Mertz, FNAL 630-840-6322 mertz@fnal.gov

*Lead

Observers
Adam Bihary, DOE/FSO 630-840-2130 adam.bihary@science.doe.gov
Kevin Flood, DOE/OHEP 301-903-0468 kevin.flood@science.doe.gov