MEMORANDUM OF UNDERSTANDING (MOU)

T-993

Shielding and Radiation Effect Experiments II

Japanese-American Study of Muon Interactions and Neutron detection
(JASMIN-2, continuation of T972)

FNAL-Japan Radiation Physics Collaboration Team

December 7, 2009
TABLE OF CONTENTS

1. INTRODUCTION .. 3
2. OUTLINE AND STATUS ... 3
3. EXPERIMENTAL PLANS AND ITEMS .. 4
4. SCHEDULES .. 6
5. PERSONNELS AND INSTITUTIONS ... 8
6. RESPONSIBILITIES BY INSTITUTION - NON FERMILAB ... 9
7. RESPONSIBILITIES BY INSTITUTION – FERMILAB ... 9
8. BUDGETS ... 11
9. SPECIAL CONSIDERATIONS ... 12

SIGNATURES ... 13

APPENDIX I - HAZARD IDENTIFICATION CHECKLIST .. 14

APPENDIX II – SAFETY ANALYSIS ON REPLACEMENT
OF SHIELDING CONCRETE ... 15

APPENDIX III – ELECTRONIC MODULES LOAN FROM PREP ... 16
1. INTRODUCTION

This is a Memorandum of Understanding (MOU) between Fermilab and experimenters who have committed to participate in the “Shielding and Radiation Effect Experiments II (JASMIN-2) to be carried out over three years, starting November 2009. This is a continuation and extension of a successfully completed first stage, JASMIN (T972).

This memorandum is intended solely for the purpose of providing a work allocation for Fermilab and the participating institutions and universities. It reflects an arrangement that is currently satisfactory to the parties involved. It is recognized that changing circumstances of the evolving research program may necessitate further revisions. The parties agree to negotiate amendments to this memorandum to reflect such revisions.

In all the phases of the experimental work outlined in this MOU, the experimenters will abide by the Fermilab Environmental Safety and Health Manual (FESHM) as prescribed and guided by the laboratory’s ES&H staff.

2. OUTLINE AND STATUS

The efforts covered by this MOU are meant to be the continuation and extension of the JASMIN project (T972) - a study of shielding and radiation effects at the Pbar target station and NuMI hadron absorber region at Fermilab. The project includes research for high-energy, high-intensity accelerators, space applications in the areas of particle production, showering and transmission in thick targets, collimators and radiation shielding as well as of radiation effects on instruments and materials.

The purpose of this project is to obtain the following data for high-energy particles using Fermilab accelerator facilities:

(1) Shielding data,
 Measuring quantity: - Energy spectra of generated and transmitted particles
 - Prompt dose rates
 - Radioactive nuclide production rates in materials and air
 Location: - Beam line, target & beam dump
 - Inside & outside shield
 - Penetration duct

(2) Radiation effect data
 Measuring quantity: - Absorbed dose
 - Radionuclide production and residual dose
 - DPA (displacement per atom) of materials
 - Soft error of semi-conductors
 Location: - use same locations for shielding-data measurement
Since experimental shielding data in the energy region above 1 GeV is very scarce, the data from this experiment will be very useful for the following:

(a) Benchmarking of simulation codes (MARS, PHITS):
 - Possible accuracy upgrade,
 - Modification of physical model and parameterizations.
(b) Material science, space science, high-energy accelerator science and engineering:
 - Provide irradiation field for radiation effect studies of materials or devices
 - Development of simulation code for radiation damage and radionuclide production.
(c) Radiation safety estimation:
 - Prompt dose distribution inside and outside shield and through penetration ducts
 - Residual activity in material and air

This MOU includes two experiments - one at the antiproton target station (termed “Pbar”), and one at the NUMI absorber termed “NuMI”). It is planned for the three years of the project (Nov. 2009 – Mar. 2012).

Two experiments at Pbar and NuMI were carried out in the former project JASMIN (T972) in Oct. 2007 – Mar. 2009:

(a) Pbar experiment
 In order to estimate the radiation field characteristics on top of the Pbar target station, shielding experiments behind steel and concrete shields were carried out. Neutron reaction rates and flux distributions were measured by activation methods and various detectors. To understand the nuclear reactions occurring in the upper atmosphere from a geophysical aspect, residual nucleus distributions around air of the target was also measured using various filters. These data are undergoing analysis using the MARS and PHITS codes for benchmarking and establishing irradiation field.

(b) NuMI experiment
 In order to study radioisotopes produced by cosmic fast muons and muon induced radioactivity in high intensity and energy accelerators as well as radiation characteristics downstream of the NuMI absorber, residual nucleus distributions and radiation reaction rate distributions were measured by the activation methods and various kinds of detectors. These data are also under analysis for benchmarking of MARS and inclusion of muon interaction in PHITS.

3. EXPERIMENTAL PLANS AND ITEMS

The experimental items planned for the next three years which are covered by this MOU are as follows:

(a) Pbar
 - Secondary particle production from the Pbar target (continued from T972)
 - Shielding experiment (continued and new)
 - In steel to the 90-degree direction (done in 2008) and a forward direction (using
another filler plate at the forward direction.)

- In concrete (by plugging samples into the concrete cap block)
- Duct streaming experiments using the cable ducts (done a test experiment in 2008 and continued)
- Characterization of the neutron field in the air gap (required for analyses of duct streaming and in-concrete data)
- Gas and cooling water analysis
 - Measurement of filter-trapped products (continued)
 - Measurement of short-lived products with half-lives less than a few seconds (new)
- Tritium analysis in the RAW systems (new experiment)
 - Condensed moisture in the target tunnel by a chiller
 - Cooling water of the Pbar-target devices (lens etc.) and the gamma-ray-resolved gas.
- Neutron spectrum measurement using active counters (continued and new)

As for shielding experiment in concrete, concrete shields set at upper side of the Pbar target are replaced by concrete shields with holes for setting samples as shown in fig. 3.1. The shields are made with the same concrete and the holes are plugged by concrete blocks. Thus, shielding effectiveness is unchanged. The detail is described in Appendix II.

![Fig. 3.1 Concrete shielding assembly above Pbar target](image)

(b) NuMI

- Alcove 0 and 1
 - Confirmation of the muon beam position and direction (continued)
 - Characterization of the secondary particle field around the hadron absorber (continued, needed to establish the technical method for characterizing the mixed field of neutrons and muons)
- From Alcove 2-4
 - Measurement of muon attenuation in rock (continued)
 - Measurement of nuclide production by muons (continued)
 - Measurement of muon and secondary particle spatial distribution (continued)

Experimental schedules between April 2009 and March 2012 are shown in Table 1, which includes Japanese visitor schedules and Pbar & NuMI access requests.

The first work in 2009 is to apply for machine time at the Meson Test Beam Facility. That work is outlined in a separate MOU – T994. The application process will start as soon as possible to obtain the machine time for at least one week in February, 2010. During the summer 2009 shutdown period, the Japanese collaborators visited Fermilab to set new samples in the NuMI alcove and to remove and analyze the old samples installed last year. They will visit again for 3–4 weeks in the winter, including the MTest machine time. During the stay, the experimenters will access the NuMI alcove to remove the samples and put dosimeters when a natural beam downtime occurs. In addition to the gas analysis which was carried out so far using the gas sampling system in Pbar, a test analysis of cooling water of the Pbar devices will be started. The access to the Pbar target station is not required because the experimenters do not plan the foil activation in Pbar in this year.

In 2010 or later, the experimenters plan the foil activation in the steel shield at a position downstream from the Pbar target and in the concrete shield. For the experiment, preparation of a new filler plate and the special concrete block into which activation foils can be installed will be started in 2009.

The visit schedules in 2010–2012 depends on the accelerator operation schedule and the machine time of MTest.
Table 1 Major experimental schedules, visit schedule and the access request for Pbar and NuMI between April 2009 and March 2011

<table>
<thead>
<tr>
<th>Facility</th>
<th>Pbar</th>
<th>NuMI</th>
<th>Meson Test Beam Facility (MTest)</th>
<th>Visit Schedule</th>
<th>Access request for Pbar & NuMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment items</td>
<td>Neutron Field Characterization</td>
<td>Characterization of incident muon beam in the hadron absorber hall</td>
<td>Muon interactions in rock</td>
<td>Basic nuclear data</td>
<td>Development of elemental technique for field characterization</td>
</tr>
<tr>
<td>2009</td>
<td>Sampling and analysis test of the condensed moisture in the beam tunnel</td>
<td>Measurement of the muon beam profile</td>
<td>Nuclide production by muon in Alcove 2-4</td>
<td>Proton-induced activation cross sections</td>
<td>1 week for sample setting at NuMI in August</td>
</tr>
<tr>
<td>In the concrete shield</td>
<td>Gas analysis</td>
<td>Cont.</td>
<td>Distribution of muon and secondary using detectors</td>
<td>Characterization of the secondary neutron field for the test target using counter and dosimeters</td>
<td>Pbar: None NuMI: During the summer shut down for setting samples and on the natural downtime during our 2-3 week stay for removing them</td>
</tr>
<tr>
<td>2010</td>
<td>Analysis of the condensed moisture and cooling water</td>
<td>Muon and neutron field characterization in Alcove 0-1</td>
<td>Cont.</td>
<td>Activation by the secondary particle from a test target</td>
<td>1-2 months in total The visit timing will depend on the accelerator operation schedule and the MTBF machine time obtained b)</td>
</tr>
<tr>
<td>Measurement of neutron dose rate using dosimeters</td>
<td>Gas analysis</td>
<td>Cont.</td>
<td>Cont.</td>
<td>Characterization of the secondary particle field for the test target using counter and dosimeters</td>
<td>Pbar: During a shutdown period for setting the samples in concrete shield Need another access for removing them b) NuMI: During a shutdown period for setting samples and on the natural downtime for removing them</td>
</tr>
<tr>
<td>2011 & 2012 (–March)</td>
<td>Cont.</td>
<td>Cont.</td>
<td>Characterization of the secondary neutron and its attenuation for the test target</td>
<td>Development of measurement technique for the characterization of high energy neutron field higher than 100 MeV</td>
<td>Same as above</td>
</tr>
<tr>
<td>In the steel shield at a downstream position</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pbar: During a shutdown period for setting the samples in the steel. Need another access for removing them b) NuMI: During a shutdown period for setting samples and on the natural downtime for removing them</td>
</tr>
<tr>
<td>Sample: Bi, Cu, Al, In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duct streaming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9) The experimenters have to request operational stop of the accelerator unless they can use the natural downtime or the short downtime scheduled in advance.

b) MTest machine time for 1-2 weeks will be requested every year.
5. PERSONNEL AND INSTITUTIONS

Co-spokespersons: Hiroshi Nakashima (JAEA), Nikolai Mokhov (APC)

The group members at present are:

JAEA (Japan Atomic Energy Agency)
- Hiroshi Nakashima (Safety Division Deputy Leader, J-PARC Center)
- Yukio Sakamoto (Principal Scientist, Research Group Leader for Applied Radiation Physics)
- Yoshimi Kasugai (Principal Scientist)
- Yoshihiro Nakane (Principal Scientist)
- Yosuke Iwamoto (Scientist)
- Norihiro Matsuda (Scientist)
- Fumihiro Masukawa (Scientist)
- Tokushi Shibata (Scientific Consultant)

KEK (High Energy Accelerator Research Organization), Japan
- Toshiya Sanami (Scientist)
- Hiroshi Matsumura (Scientist)
- Hiroshi Iwase (Scientist)
- Masayuki Hagiwara (Scientist)
- Hideo Hirayama (Professor)
- Syuichi Ban (Professor)

Kyoto Univ., Japan
- Hiroshi Yoshima (Scientist)

Shimizu Corporation, Japan
- Takashi Nakamura (Scientific Consultant, Professor emeritus of Tohoku Univ.)
- Koji Oishi (Principal Scientist)

Kyushu Univ., Japan
- Kenji Ishibashi (Professor)
- Nobuhiko Shigyo (Assistant Professor)

Tsukuba Univ., Japan
- Norikazu Kinoshita (Scientist)

RIST, Japan
- Koji Niita (Head of Simulation code development group)

PAL (Pohang Accelerator Laboratory), Korea
- Hee-Seock Lee (Head of Radiation safety group)

Fermilab
- Nikolai Mokhov (Scientist III, Head of Energy Deposition Department, APC)
- Igor Rakhno (Applications Physicist, APC)
- Kamran Vaziri (Physicist, ES&H, Radiation Physics)
- Tony Leveling (Physicist, AD, Pbar)
- David Boehnlein (Physicist, PPD, Neutrino Department)
- Aria Meyhoefer (Test beam liaison, PPD, EPP)
- Eric McHugh (PPD Safety Officer)
- Gary Lautenschlager (Radiation Physicist, AD, ES&H Radiation Safety)
6. RESPONSIBILITIES BY INSTITUTION - NON FERMILAB
- Funding for construction of new concrete shields will be borne by experimenters. (JAEA)
- Shipping Ge-detectors, scintillation counters, activation samples etc. from and back to Japan. Costs will be borne by experimenters. (JAEA)
- Setting up for Ge-detectors, active counters, their electronic circuit, and DAQ system. (JAEA, KEK and Kyoto)
- Setting and removing sample to be irradiated. (JAEA, KEK and Kyoto)
- Measurements of gamma rays from radionuclides from irradiated sample with Ge-detector. (JAEA, KEK and Kyoto)
- Active counter measurements. (JAEA, KEK and Kyushu)
- Chemical separation process. (KEK)
- Assist in designing concrete shields (JAEA, Shimizu Corp.)
- Data analysis. (All)

7. RESPONSIBILITIES BY INSTITUTION – FERMILAB

ACCELERATOR PHYSICS CENTER (APC)
- Assistance for the experimenters of this project.
- Full simulation support prior and after measurements.

ACCELERATOR DIVISION (AD)
- Provide budget code for design of new shielding blocks.
- Install concrete shields with detector slots above Pbar target station.
- Survey and assistance to equip or remove the detectors.
- Assistance for Fermilab safety training for the experimenters in AP0 building, NUMI hadron absorber region and NUMI muon alcoves.
- Coordinate access to the experimental area at AP0 building and to the NUMI muon alcoves.
- Number of protons at the Pbar target is provided as real-time electric signal pulse and/or as data of particle number history after beam time.
- Assistance of placing electronics with CAMAC crate and DAQ system at a counting area of AP0 building NuMI Hadron Absorber Room and Muon Alcoves for active counter measurement.
- Lend cables and connectors.
- Open, close and moving the concrete shield cap or steel shielding of air gap.
 (parasitic to other needs to open the cap or shielding)
- Use of existing crane for detector setting and removing during operation.
- Use of penetration ducts to pull detectors inside the air gap between steel and concrete shields using rope.
- Transport irradiated samples from the radiation area to a counting room at HIL.
- Accumulated toroid readings and POT history for the run.
- Organize Cryo Panel review and obtain PPD permission for use of LN in the counting room at HIL.
FACILITIES ENGINEERING SERVICE SECTION (FESS)
- Design concrete shields with detector slots for Pbar target station.

PARTICLE PHYSICS DIVISION (PPD)
- Assistance for Fermilab ES&H training for the experimenters in NuMI
- Receive irradiated samples at the HIL counting from AD and provide handling and storage instructions for irradiated samples at HIL.
- Ensure compatibility of JASMIN experimental apparatus with other existing experiments in the Hadron Absorber Room and Muon Alcoves.
- Assistance of placing electronics with CAMAC crate and DAQ system at bypass tunnel by muon alcoves.
- Lend 100 lead bricks until this project completes. All lead bricks will be covered and handled with gloves. (Eric McHugh)
- Lend 3 counting rooms in HIL (High Intensity Lab) for measurement of sample activities with several Ge-detectors, for data analysis, and for storage of all detectors, electronics, etc. until this project completes.

COMPUTING DIVISION
- Lend and maintain electronic modules & tools from PREP. (See Appendix III)
- Set up connection of an internet in a counting room at HIL to observe a real-time beam status (the connection may already exist).
- Lend and set up a printer for data analysis in the counting room.

ES&H SECTION
- Assistance with ES&H reviews.
- Lend a chemical laboratory in RAF for chemical separation of irradiated samples.
 (Only samples registering a contact dose rate of < 1 mrad/hr. can be processed at the Fermilab RAF chemistry lab and when this work does not interrupt services to the primary Fermilab program.)
- Lend RAF Ge-detectors when available.
- Lend a PC, to be used for the data acquisition only.
- Assistance for calibration sources.
- Assistance to transport irradiated samples to the counting room.
- Arrangement of a source storage box for calibration sources & irradiated samples in the counting room.
- Lend 100 virgin lead bricks until this project completes. A sufficient number of lead bricks are in the HIL building now. Half of them, lent by Vernon Cupps, are covered by plastic bags. The other half are newly bought, and painted. Gloves will be used for all lead handling.
- Assistance with shipping radio-active samples to Japan.
- Analyze radioactive water samples for tritium
8. BUDGET

<table>
<thead>
<tr>
<th></th>
<th>FY2009</th>
<th>FY2010</th>
<th>FY2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) PPD Experimental support</td>
<td>$1K</td>
<td>$1K</td>
<td>$1K</td>
</tr>
<tr>
<td>(2) AD Target station shielding block design</td>
<td>$5K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Fermilab</td>
<td>$6K</td>
<td>$1K</td>
<td>$1K</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Experimental devices and activation detector</td>
<td>$3.4K</td>
<td>$2.4K</td>
<td>$0K</td>
</tr>
<tr>
<td>(3) Transportation of experimental devices</td>
<td>$0.6K</td>
<td>$0.6K</td>
<td>$1K</td>
</tr>
<tr>
<td>(4) Travel expense</td>
<td>$48K</td>
<td>$40K</td>
<td>$48K</td>
</tr>
<tr>
<td>Total Japan</td>
<td>$52K</td>
<td>$43K</td>
<td>$49K</td>
</tr>
</tbody>
</table>
9. SPECIAL CONSIDERATIONS

9.1 The responsibilities and procedures to be followed by experimenters are found in the Fermilab publication "Procedures for Experimenters": (http://www.fnal.gov/directorate/documents/index.html). The Spokespersons agree to those responsibilities and to follow the described procedures.

9.2 To carry out the experiment a number of Environmental, Safety and Health (ES&H) reviews are necessary. This includes creating an Operational Readiness Clearance document in conjunction with the standing Particle Physics Division committee. The Spokespersons will follow those procedures in a timely manner, as well as any other requirements put forth by the division's safety officer and follow all procedures in the PPD Operating Manual.

9.3 The Spokespersons will ensure that at least one person who is knowledgeable about the experiment's hazards is present at the access of the Pbar target station, NuMI muon alcoves, or NuMI absorber.

9.4 All regulations concerning radioactive sources will be followed. No radioactive sources will be carried onto the site or moved without the approval of the Fermilab ES&H section.

9.5 All items in the Fermilab Policy on Computing will be followed by the experimenters.

9.6 The spokespersons will undertake to ensure that no PREP or computing equipment be transferred from the experiment to another use except with the approval of and through the mechanism provided by the Computing Division management. They also undertake to ensure that no modifications of PREP equipment take place without the knowledge and consent of the Computing Division management.

9.7 The experiment group will be responsible for maintaining and repairing both the electronics and the computing hardware supplied by them for the experiment. Any items for which the experiment requests that Fermilab performs maintenance and repair should appear explicitly in this agreement.

9.8 At the completion of the experiment:

9.8.1 The Spokespersons are responsible for the return of all PREP equipment, computing equipment and non-PREP data acquisition electronics. If the return is not completed after a period of one year after the end of running the spokesperson of the group will be required to furnish, in writing, an explanation for any non-return.

9.8.2 The experimenters agree to remove their experimental equipment as the Laboratory requests them to. They agree to remove it expeditiously and in compliance with all ES&H requirements, including those related to transportation. All the expenses and personnel for the removal will be borne by the experimenters.

9.8.3 The experimenters will assist the Fermilab Divisions and Sections with the disposition of any articles left in the offices they occupied.

9.9 An experimenter will be available to report on the test beam effort at a Fermilab All Experimenters Meeting.
SIGNATURES:

Hiroshi Nakashima, Co-spokesperson, JAEA

Yukio Sakamoto, Research Group for Applied Radiation Physics, JAEA

Tori Ogawa, Director General, Nuclear Science and Engineering Directorate, JAEA

Nikolai Mokhov, Co-spokesperson, APC, Fermilab

Roger Dixon, Accelerator Division

Mike Lindgren, Particle Physics Division

Peter Cooper, Computing Division

Nancy Grossman, ES&H Section

Greg Bodk, Associate Director, Fermilab

Stephen Holmes, Associate Director, Fermilab
<table>
<thead>
<tr>
<th>Cryogenics</th>
<th>Electrical Equipment</th>
<th>Hazardous/Toxic Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>LN2 filled Ge detector</td>
<td>Cryo/Electrical devices</td>
<td>List hazardous/toxic materials</td>
</tr>
<tr>
<td>Analysis magnets</td>
<td>capacitor banks</td>
<td>planned for use in a beam line or experimental enclosure:</td>
</tr>
<tr>
<td>Target</td>
<td>high voltage (power supply, 2kV, 4kV)</td>
<td>Radiation hazard: Irradiated foils or disks (Al, Bi, In, Au, Cu, Fe)</td>
</tr>
<tr>
<td>Bubble chamber</td>
<td>exposed equipment over 50 V</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure Vessels</th>
<th>Flammable Gases or Liquids</th>
</tr>
</thead>
<tbody>
<tr>
<td>inside diameter</td>
<td>Type:</td>
</tr>
<tr>
<td>operating pressure</td>
<td>Flow rate:</td>
</tr>
<tr>
<td>window material</td>
<td>Capacity:</td>
</tr>
<tr>
<td>window thickness</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vacuum Vessels</th>
<th>Target Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>inside diameter</td>
<td>temporary use (at AP0 building) (at NuM1 bypass tunnel, need negotiation)</td>
</tr>
<tr>
<td>operating pressure</td>
<td>Type: Co-60, Na-22, Cs-137</td>
</tr>
<tr>
<td>window material</td>
<td>Strength: 100 uCi</td>
</tr>
<tr>
<td>window thickness</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lasers</th>
<th>Hazardous Chemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanide plating materials</td>
<td>Lead (Pb)</td>
</tr>
<tr>
<td>Permanent installation</td>
<td>PCBs</td>
</tr>
<tr>
<td>Other: Activated Water and air</td>
<td>Uranium (U)</td>
</tr>
<tr>
<td>Temporary installation</td>
<td>NE213 organic liquid scintillator (1.6 liters, sealed in aluminum capsule with O-ring)</td>
</tr>
<tr>
<td>Calibration</td>
<td>Methane</td>
</tr>
<tr>
<td>Alignment</td>
<td>TMAE</td>
</tr>
<tr>
<td>type:</td>
<td>TEA</td>
</tr>
<tr>
<td>Wattage:</td>
<td>photographic developers</td>
</tr>
<tr>
<td>class:</td>
<td>Other: Activated Water and air</td>
</tr>
<tr>
<td>Mechanical Structures</td>
<td>Others</td>
</tr>
<tr>
<td>Lifting devices</td>
<td></td>
</tr>
<tr>
<td>Motion controllers - manual</td>
<td></td>
</tr>
<tr>
<td>scaffolding/elevated platforms</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX II - SAFETY ANALYSIS ON REPLACEMENT OF SHIELDING CONCRETE

The concrete shield of the Pbar target station will be replaced by special blocks designed for setting activation samples. A schematic drawing of the special shield blocks is shown in Fig.A2-1. Some of the special shield-blocks have through-holes with cylindrical shape. The holes will be filled with concrete plugs during proton beam operation, and the special blocks and plugs will be made with the same concrete as the original ones. Therefore, the shielding performance of the special blocks as bulk shield is almost unchanged in comparison with the original ones. However contribution of neutron-streaming effect of gaps between the shield blocks and plugs may not be negligible for radiation dose rates on the concrete shield. In order to estimate the contribution of streaming effect, the radiation doses at the reference positions shown in Fig.A2-1 were compared with non-gap case by using the Monte Carlo calculation code of PHITS. Ratios of neutron dose at the reference position with cases between on-gap and non-gap are tabulated in Table.A2-1. The result shows that the neutron dose on the concrete surface increases partially at the gap positions by a factor of 2 at a maximum after the replacement of the shield blocks.

![Schematic drawing of the special concrete blocks](image)

Fig. A2-1 Schematic drawing of the special concrete blocks. The positions of holes are named as CC01–CC04 from downstream to upstream for a proton beam direction, and the CC02 is located just on the target position. The plugs setting in the holes are shown by hatching. The gap between the plugs and the blocks are designed to be 0.25 cm.

<table>
<thead>
<tr>
<th>Position</th>
<th>Ratio of Neutron Dose [On-gap/Non-gap]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC01</td>
<td>2.0</td>
</tr>
<tr>
<td>CC02</td>
<td>1.4</td>
</tr>
<tr>
<td>CC03</td>
<td>1.3</td>
</tr>
<tr>
<td>CC04</td>
<td>1.0</td>
</tr>
</tbody>
</table>
APPENDIX III -- ELECTRONIC MODULES LOAN FROM PREP

The following electronic modules are needed to conduct the experiment. These modules are brought from Japan. Computing Division (PREP) may be asked to lend electronic modules for replacement of items in this list, if the need arises, and if those modules are available.

<table>
<thead>
<tr>
<th>Number</th>
<th>Module name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ADC (LeCroy 2249A)</td>
</tr>
<tr>
<td>1</td>
<td>TDC (LeCroy 2228A)</td>
</tr>
<tr>
<td>2</td>
<td>Constant Fraction Discriminator (ORTEC934)</td>
</tr>
<tr>
<td>2</td>
<td>Discriminator (LRS: 623B or 623A)</td>
</tr>
<tr>
<td>3</td>
<td>Gate & Delay Generator (EG&G)</td>
</tr>
<tr>
<td>2</td>
<td>Gate Generator (LRS 222)</td>
</tr>
<tr>
<td>2</td>
<td>Coincidence (LRS 622)</td>
</tr>
<tr>
<td>1</td>
<td>Level adopter (LRS 688AL)</td>
</tr>
<tr>
<td>2</td>
<td>Logic FAN-IN/FAN-OUT (LRS429A or 429)</td>
</tr>
<tr>
<td>2</td>
<td>High Voltage power supply (BERTAN210-05R, FLUKE 415B)</td>
</tr>
<tr>
<td>1</td>
<td>CAMAC Crate (DSP860C with power supply and fan)</td>
</tr>
<tr>
<td>3</td>
<td>NIM Crate (6V) (ORTEC 401A and 402H or equivalent PS)</td>
</tr>
<tr>
<td>1</td>
<td>Oscilloscope (faster than 200MHz) (TEK2465 or 2467)</td>
</tr>
<tr>
<td>2</td>
<td>NIM Crate (ORTEC 401A and 402H or equiv PS)</td>
</tr>
</tbody>
</table>