GPU Accelerated Accelerator Modeling and Simulation

SynergiaGPU: a parallel 3D space charge PIC code accelerated by GPU and CUDA
api, developed at FNAL based on Synergia

GPU with CUDA programming model (Pros and Cons): Large number of SIMD
multi-processor at relatively low cost; massive amount of concurrent threads with
close-to-zero dispatching overheads; limited thread-local resources and
substantial latency in accessing global memory; lack of global synchronizations

Streaming algorithm for PIC:

— Parallel charge deposition, keeping particles ordered in cell to avoid racing condition
and to reduce global memory access

— Field solver (Poisson’s equation), 3D real to complex FFT and its inverse
— Parallel particle kick
— Maintaining particle order, reordering the particles after applying kick when necessary

— Diagnostics, use recursive parallel reduction algorithm for mean, standard deviation,
etc.

Breakdown of PIC simulation (SC Solver): Data Structures

* Bunch:

A set of micro particles with coordinates and momentumes.
Total 21 million particles in the test problem
Memory usage: 21 million * 7 components * 8 bytes = 1.18 Gigabytes

e Grid cells:

A three dimensional spatial grid of cells containing all the particles.
A grid of 64*64*512 in (X, v, z), total ~ 2 million cells is used in the test problem
Memory usage: 2 million * 1 scalar variable * 8 bytes = 16 Megabytes

* Ratio of particle to cell:

10 particles per cell

Breakdown of PIC simulation (SC Solver): Operations 1/3

1. Bunch, convert between states:
fixed _t < fixed_z, operation applies on each single particle

2. Bunch, statistics:

For all particles in the bunch, calculate the mean and standard deviation of coordinates and
momentums, so we may set up the domain and grid cells for the bunch

3. Charge deposition:
From coordinates (x, y, z) => cell index (ix, iy, iz)
Deposit charge to (ix, iy, iz), and 7 nearest neighbors (ix+1, iy, iz), ... (ix+1, iy+1, iz+1)
Charge density p(x, y, z)

Breakdown of PIC simulation (SC Solver): Operations 2/3

4. Green function:

Point-like or linear Green function G(x, y, z) for each grid cell

1/2

G(x,y,2)=(x"+y* +2°)

5. Poisson solver:

Charge density and Green function => Potential ¢(x, y, z)

Ib(u, v, W) — JJJ p(x, y, Z)e—2ﬂ'i(ux+vy+wz)dxdydz
é(l/l, V,W) — IJ.J G(.x, y’Z)e—271'i(wc+vy+wz)dxdydZ
O(u,v,w) = p(u,v,w)x é(u,v, w)

o(x,y,2) = J.J‘L O(u,v,w)e” ™" dudydw

Breakdown of PIC simulation (SC Solver): Operations 3/3

6. Electric field:

potential => electric fields Ex, Ey, and Ez
E.(x,7,2) = -9g(x,y,2)/9x
Ey(x,y,z) = —a(P(x,y,Z)/ay
EZ(X,Y,Z) = _a(p(x,y,Z)/aZ

7. Apply kick:

electric fields + equations of motion => advance the location and momentum for each
particle in the bunch

Introducing the GPU

in SIMT by steaming
processors in SMs

It consists of 14 mble
streaming multi-

processors (SMs) :,',':

sotup/rastor/Zcull | .
: L 15

streaming
processors (SPs)

texture texture texture texture
] unit unit unit

tox L1

Processing Flow on GPU

GPUs only have the access to
the device memory

Data exchange is relatively slow
between device memory and
host memory

— PCIE bandwidth 8GB/s
— Video mem bandwidth 144GB/s

Minimize the data movement
between host and device

CPU

Instruct the processing)

2

Main
Memory 1
Copy processing data
4
Copy the result
Memory
for GPU

GPU
(GeForce 8800)

Processing flow
on CUDA

-
Execute parallel

in each core

3

[

Memory Hierarchy of GPU

144GB/s memory bandwidth e b vt e SE
seems to be super fast? AR A e

Yes and No
— Global memory access ~ 200 cycle
— Shared memory access ~ 10 cycle
— 8instructions per cycle

— Possible memory congestion
and bank conflicts

Memory access pattern is the
key in optimization
— Minimize global memory access, make use of shared memory, localization, etc.

CUDA-fication of the PIC simulation: Data Structures

Bunch:

A set of micro particles with coordinates and momentumes.
Total 21 million particles in the test problem
Memory usage: 21 million * 7 components * 8 bytes = 1.18 Gigabytes

N Move to the Device Memory
Grid cells:

A three dimensional spatial grid of cells containing all the particles.
A grid of 64*64*512 in (X, v, z), total ~ 2 million cells is used in the test problem
Memory usage: 2 million * 1 scalar variable * 8 bytes = 16 Megabytes

® Intermediate results are
Ratio of particle to cell: stored in the device

memory
10 particles per cell

CUDA-fication of the PIC simulation: Operations 1/3

1. Bunch, convert between states:
fixed _t < fixed_z, operation applies on each single particle

N One thread per particle
easy parallelizable

2. Bunch, statistics:
For all particles in the bunch, calculate the mean and standard deviation of coordinates and

momentums N Parallel reduction

DURNEAN

3. Charge deposition: D
From coordinates (x, y, z) => cell index (ix, iy, iz)
Deposit charges to (ix, iy, iz), and 7 nearest neighbors (ix+1, iy, iz), ... (ix+1, iy+1, iz+1)
Charge density p(x, y, z)

N Main issue: avoid racing cond.

CUDA-fication of the PIC simulation: Operations 2/3

4. Green function:

Point-like or linear Green function G(x, y, z) for each grid cell

1/2

G(x,y,2)=(x"+y +2°) ® One thread per cell

easy parallelizable

5. Poisson solver:

Charge density and Green function => Potential ¢(x, y, z)

p(u,v,w)= ”L p(x,y,2)e " dxdydyz

G(u,v,w) = ”LG(x, y,2)e - FE dadydz R CUFFT library for Forward and

n N A Inverse Fourier Transformation
o(u,v,w) = p(u,v,w)x G(u,v,w)

o(x,y,2) = J.J‘L O(u,v,w)e” ™" dudydw

CUDA-fication of the PIC simulation: Operations 3/3

Theaggian Blockldx.x
6. Electric field: 3
potential => electric fields Ex, Ey, and Ez =
AN\SE <
E (x,y,2)=-0¢(x,y,z)/0x |Easa=s =
Ey('x9y’z)=_a¢(x’yaz)/ay < =L .
Ez(x’y’z)=_a(p(x7yaz)/az 3

. N Use shared memory to halve the
7. Apply kick: global memory access

electric fields + equations of motion => advance the location and momentum for each
particle in the bunch

N One thread per particle
N One particle needs 24 points of Ex, Ey, and Ez data,

leaves space for optimization

Parallel Reduction with CUDA: Algorithm

 Tree-based parallel reduction
approach within a thread block

* Avoid global sync by decomposing
computation into multiple kernel

invocations
{E Q Q ig {!2 Q iﬁ ? Level O:
8 blocks
-~ -
\\\\\ \\ \ I // ,/’/’
-~ \\\\ S N7 -
>N 2~

3 Level 1;
1 block

Parallel Reduction with CUDA: Optimization

Values (shared memory)

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

10 | 1

o

11| 1

41 | 1

17

13

11

Parallel Reduction with CUDA: Optimization

Values (shared memory)| 10| 1 |8 |1|0|2|3|5|-2|3|2|7]|0|11|0]2

Step 1 Thread
Stride 8 IDs

Values

Step 2 Thread

Stride 4 IDs
Values

Step 3 Thread

Stride 2 IDs

Values |21 |20(13|13(0|9 (3 |7 |-2|-3|2 |7 |0 (11| 0| 2

Step 4 Thread
Stride 1 IDs

Values |41|20(13|13(0 |9 (3 |7 |-2|-3|2 |7 |0(11]| 0| 2

Parallel Reduction with CUDA: Performance

Kernel 1:

interleaved addressing
with divergent branching

Kernel 2:

interleaved addressing
with bank conflicts

Kernel 3:

sequential addressing

Kernel 4:
first add during global load

Kernel 5:

unroll last warp

Kernel 6:

completely unrolled

Kernel 7:

multiple elements per thread

Time (222 ints)

8.054 ms

3.456 ms

1.722 ms
0.965 ms
0.536 ms
0.381 ms

0.268 ms

Bandwidth

2.083 GB/s

4.854 GB/s

9.741 GB/s

17.377 GB/s

31.289 GB/s

43.996 GB/s

62.671 GB/s

Step

Cumulative

Speedup Speedup

2.33x

2.01x

1.78x

1.8x

1.41x

1.42x

2.33x

4.68x

8.34x

15.01x

21.16x

30.04x

Parallel Charge Deposition: The Problem

21 million particles being deposit \
to 2.1 million cells, resulting in an .
array of accumulated charge \ : .
density for each cell . — ,: o
© o |/
N§# ¢) ® v ‘0 ‘ w ...__‘_.L

In the multi-threading world RN L5 - WL I
it leads to data corruption B P *
because of the racing conditions ﬁi'.—' '; T o °k ; ..,l ‘ .

® .J .
Even worse, CUDA does not provide .

any mutex-like locking facilities, no
atomic operations for double values, and no global barriers

Parallel Charge Deposition: Approach 1 — n-copy

* Each thread deposits charges into its own copy of charge density array
* Concurrency is limited by the number of copies
* Larger # of copies -> higher concurrency -> more work for the reduction

/ /

/ Reduction

* 16MBytes per copy
* Best performance achieved at 64 copies

Final charge density

Parallel Charge Deposition: Approach 2 — group particles by cells

Grid cells

List of particles
* First sort and group particles into coeoe O O oo
their corresponding cells

* Then do the charge deposition on
a cell-indexed basis in an interleaved pattern, in parallel

Z axis passl pass2
0 tid:0
1 tid:0
2 tid:1
3 tid:1
4 tid:2
5 tid:2
6 tid:3
7 tid:3

Parallel Charge Deposition: Approach 2 — group particles by cells

Grid cells
List of particles
* Pros: eoooe o O L)
— Avoid racing condition
— Higher concurrency o o v 0066
— Data locality

* Beyond the charge deposition, the most time consuming part is “apply kick”
* For unsorted particles, one particle => fetch 24 cell data (Ex, Ey, Ez)
* 85% of time wasted waiting for global data

* If particles are grouped by cells, one group of particles only needs 3 cell data, yields 98.75% less memory ops

* (Cons:
— Itis expensive to maintain the sorted particle lists
— Uneven distribution of particles => load balancing issue => branches in execution path
— Added another layer of indirection, which agonists the data locality principle

* Raw particle array

Group Particles by Cells: Data structure

 Index list

= Particle 0 Particle 1 Partice2 — -
x |[Px|y |[Py| z |Pz]|id Px|y |Py| z |[Pz|id Px|y |[Py| z |Pz|id ... # of particles X 7
— Sorting particles to cells by moving raw data is expensive
Linked list adds too much indirections for accessing data
Cell 0 Cell 1 Cell 2
Indices of particles 7 2 |12 |17 |33 | 4 | 6 ... # of particles PL[N]
Offsets of each cell 3 .. # of cells Offset[n]

Offset[i+1] — Offset[i]: number of particles in cell i

Group Particles by Cells: Build the index list

1. #of particles in each cell (easy parallelizable)

10 | 12

... #of cells

2. Do parallel accumulation in each segment (concurrency = # of segments)

Segment 0

Segment 1

Segment 2

3

7

9

7

13

13

5

15 | 27

... #of cells

e

o

13

27

... # of segments

@ intermediate_result_1

3. Do the accumulation across the segments (concurrency = 1)

22

49

... # of segments

@n intermediate_result_2

Group Particles by Cells: Build the index list

4. Add intermediate 2 to intermediate 1 (concurrency = # of cells)

Segment 0

Segment 1

Segment 2

0|3

7

9

7

13

13

5

15 | 27

... #of cells

5. Offsets array:

@m intermediate_result_1

‘ intermediate_result 2

6. Index list array:

0 9 22 49 | ... # of segments

0O | 3 |7 |9 |16|22 |22 |27 |37 |49 ... #of cells
Cell 0 Cell 1 Cell 2

5|7 |8 |2 (12|17 |33 | 4 | 6 ... # of particles

Group Particles by Cells: Interleaved Charge Deposition

e Grid level interleaving

lteration_1

lteration_3

lteration_2

lteration_4

Group Particles by Cells: Charge deposition in chessboard

* Thread-level interleaving

DERANERN
% H
’@Q — {2 N
(o4 3
© 14
C
%
Stepl: Sync-barrier StepZ
Deposit at Deposit at

x = thread_id x = thread_id+1

Performance Comparison for Breakdown Operations

1. Intel Xeon X5550, single process @ 2.67GHz;
2. NVidia Tesla C1060, 30 streaming multi-processors @ 1.30GHz in a single GPU
3. Nvidia Tesla C1060 x 4

Bunch.Convert
Bunch.Stat
Charge deposition
Green funciton
Poisson solver

Electric field

Apply kick

Execution
4 Time (s)

Overall Performance Comparison

Comparison systems:

1. Intel Xeon X5550, single process @ 2.67GHz;

2. Fermilab Wilson Cluster, dual Xeon X5650 2.67GHz nodes. 16 nodes / 128 cores used
3. NVidia Tesla C1060, 30 streaming multi-processors @ 1.30GHz in a single GPU

4. Nvidia Tesla C1060 x 4

396 sec | m xcon 5550

45 sec Wilson Cluster ™ Wilson Cluster

64 sec Tesla C1060 W Tesla C1060

28 sec Tesla C1060 x 4 W C1060 x 4

Execution Time
700 (in seconds)

