Electromagnetics computations on the Yee mesh are very fast, with a cell update requiring less than 3 core-ns on Sandybridge hardware. However, in the presence of non-grid-aligned dielectrics or conductors, with stair-stepped boundaries, the error rises to $O(Dx)$. For conductors, Dey-Mittra embedded boundaries reduce the error to $O(Dx^2)$, with $O(Dx^3)$ error available through Richardson extrapolation. As shown here, similar accuracy in eigenmode frequencies can now be obtained for dielectrics with non-grid-aligned surfaces, and surface fields are obtained accurately as well. Finally, the proper definition of the magnetic flux divergence for the conductor-cut boundary cells is found. Subtracting its gradient from the curl-curl operator leaves a positive definite operator that can be inverted using a multi-level preconditioner.

Carl A Bauer, Greg R Werner, U. Colorado
John R Cary (presenter)
Prof. Physics, U. Colorado
CEO, Tech-X
Today: embedded boundary methods, fast accurate, scalable: dielectrics and metals

- Historical finite difference inaccurate, but metallic embedded boundary methods recover accuracy
- Improve frequencies with eigenvalue solver but
 - Need Poissonish operator
 - Need to subtract gradient of divergence in partial cells
- Fields also improved
- Dielectrics improved
Standard Yee update can be written in matrix form

- Upward differencing = \mathbf{C}
- Downward differencing = \mathbf{C}^T

Vector calculus
\[
\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}
\]
FD Matrix
\[
\frac{\partial \mathbf{B}}{\partial t} = - \mathbf{C} \mathbf{E}
\]
\[
\frac{\partial \mathbf{D}}{\partial t} = \nabla \times \mathbf{H}
\]
\[
\frac{\partial \mathbf{D}}{\partial t} = \mathbf{C}^T \mathbf{E}
\]

\[\epsilon_0 = \mu_0 = 1 \text{ vacuum}\]

Precise Dey-Mittra boundary conditions give local $O(Dx)$, global $O(Dx^2)$

- DM use integral form of Faraday
 - Multiply E by lengths
 - Divide by area
- DM not derived but heuristic
 - only Faraday changed
 - B no longer centered so how further differenced?
- (Unpublished) derivation exists
- Gustafson "theorem"
- Modifies matrix form

\[\frac{\partial^2 B}{\partial t^2} = -A^{-1} CLC^T B \]

\[\frac{\partial^2 \left(A^{1/2} B \right)}{\partial t^2} = -A^{-1/2} CLC^T A^{-1/2} \left(A^{1/2} B \right) \]

Modified CFL condition for Dey-Mittra BCs gives transition to $O(Dx)$

- Cut-cell matrix elements scale as L/A
- L/A can be vanishingly small
- Time domain then requires face dropping
 - Pick CFL acceptable CFL reduction (Dey-Mittra fraction)
 - Use Gershgorin circle theorem to drop faces
- Result is lower accuracy at high resolution (still get parts in 10^5 through Richardson)

Frequency solver would eliminate transition, but want multigrid friendly operator

- Curl-curl: coupled vector components
- Shift invert requires solving
- Not amenable to multigrid solves
- Direct solvers not scalable
- Vector calculus gives Laplacian, but
 - reaches outside simulation
 - unknown for Dey-Mittra

\[-\frac{\partial^2 \mathbf{B}}{\partial t^2} = \omega^2 \mathbf{B} = \nabla \times \nabla \times \mathbf{B} \]

\[
\omega^2 B_x = \frac{\partial}{\partial y} \left[\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} \right] - \frac{\partial}{\partial z} \left[\frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x} \right]
\]

\[
= -\frac{\partial^2 B_x}{\partial y^2} - \frac{\partial^2 B_x}{\partial z^2} + \frac{\partial^2 B_y}{\partial x \partial y} + \frac{\partial^2 B_z}{\partial x \partial z}
\]

\[\omega^2 \mathbf{B} = \nabla \times \nabla \times \mathbf{B} = \nabla \nabla \cdot \mathbf{B} - \nabla^2 \mathbf{B} = -\nabla^2 \mathbf{B} \]

Stencil reaches outside boundary
Removal of grad-div relies on geometric interpretation

- Know curl curl in Dey-Mitra
- \(\text{del}^2 \) comes from subtracting off grad-div
- div can be written in terms of cell face areas and volumes
- Use that to get the Dey-Mittra \(\text{del}^2 \)

\[
\psi_{ijk} \equiv (\nabla \cdot \mathbf{B})_{ijk} = \frac{B_{x i+1,jk} - B_{xijk}}{\Delta x} + \ldots
\]

\[
= \frac{B_{x i+1,jk} a_{x i+1,jk} - B_{xijk} a_{xijk}}{V_{ijk}} + \ldots
\]

\[
\omega^2 \mathbf{B} = A^{-1} C L C^T \mathbf{B} - D^T V^{-1} D \mathbf{A}
\]

CA Bauer, GR Werner, JR Cary, A fast multigrid-based electromagnetic eigensolver for curved metal boundaries on the Yee mesh, xarchive.
Found rapid convergence for inversion

- Trilinos ML with GMRES
- Embedded boundary conversion as fast as grid aligned

<table>
<thead>
<tr>
<th></th>
<th>Cube</th>
<th>Sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component count</td>
<td>11,520</td>
<td>95,232</td>
</tr>
<tr>
<td></td>
<td>774,144</td>
<td>7,224</td>
</tr>
<tr>
<td>Avg. iteration count</td>
<td>8.0</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>9.6</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Convergence rate</td>
<td>0.18</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>0.24</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Multigrid levels</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Multigrid complexity</td>
<td>4.1</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>4.9</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Domain decomposition</td>
<td>1x1x1</td>
<td>2x2x2</td>
</tr>
<tr>
<td></td>
<td>4x4x4</td>
<td>1x1x1</td>
</tr>
<tr>
<td></td>
<td>2x2x2</td>
<td>2x2x2</td>
</tr>
<tr>
<td></td>
<td>4x4x4</td>
<td>4x4x4</td>
</tr>
</tbody>
</table>
Getting volume right crucial to rapid convergence

1. Random relative errors in volumes
2. Random errors in volumes (e.g., from subsampling)

<table>
<thead>
<tr>
<th>Error from Eq. 26</th>
<th>ϵ</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. iteration count</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>21</td>
<td>63</td>
<td>212</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error from Eq. 27</th>
<th>$\Delta v / v_{vsc}$</th>
<th>10^{-5}</th>
<th>10^{-4}</th>
<th>10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. iteration count</td>
<td>8</td>
<td>37</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
Frequency now always converges as $O(Dx^2)$
Fields appear to converge nearly as $O(Dx^2)$.
Algorithmic progress in other areas as well

- New, finite difference dielectric algorithm gives 2nd order error
- New beam launcher method reduces simulation volume
New, finite difference dielectric algorithm gives 2nd order error

- Regular convergence
The fields inside the volume V are the same in both simulations. The top simulation injects current along an entire plane; it has to simulate a large region to capture the waves emitted from all that current. The bottom simulation has no currents outside V; current on the surface of V produces the same waves (inside V) that the entire plane would produce. Here, the transverse electric field is shown.
Progress in finite difference algorithms for metallic and dielectric structures and

• Metallic embedded boundaries: can now use multigrid as a preconditioner
• Dielectric structures: high-order convergence seen
• Computational region for wake field calculations for infinite systems greatly reduced in size